Food or edible material: processes – compositions – and products – Surface coated – fluid encapsulated – laminated solid... – Dry flake – dry granular – or dry particulate material
Reexamination Certificate
2000-05-22
2002-08-27
Bhat, Nina (Department: 1761)
Food or edible material: processes, compositions, and products
Surface coated, fluid encapsulated, laminated solid...
Dry flake, dry granular, or dry particulate material
C426S578000, C426S661000, C426S654000
Reexamination Certificate
active
06440474
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the preparation and composition of a powder capable of functioning as a stabilizing agent in a wide variety of products such as foods and cosmetics. In particular, this invention relates to coprocessing microcrystalline cellulose with maltodextrin to produce a dispersion that can be spray dried at high solids content to produce a free flowing powder.
BACKGROUND OF THE INVENTION
Microcrystalline cellulose is an important component of many stabilizing agents and texture agents. However, when microcrystalline cellulose is prepared for use as a stabilizing agent and/or texture agent in a food or cosmetic, it must be coprocessed by drying with a material that acts a barrier dispersant. Unless a barrier dispersant is added, aggregation (hornification) occurs during dying, and the dried microcrystalline cellulose can not be readily redispersed. Dispersibility is essential for microcrystalline to function as a colloid in various applications, especially in the food area.
Durand, U.S. Pat. No. 3,539,365, discloses a process in which microcrystalline cellulose is coprocessed with carboxymethyl cellulose. This eliminates formation of undesirable aggregates on drying so that the dried product is easily redispersible in aqueous media. However, when carboxymethyl cellulose is coprocessed with microcrystalline cellulose by spray drying, concentrated solutions cannot be sprayed because of the high viscosity of concentrated carboxymethyl cellulose/microcrystalline cellulose solutions. Large volumes must be spray dried to obtain a given amount of a microcrystalline cellulose/carboxymethyl cellulose composition.
Therefore, a need exists for a method of producing microcrystalline cellulose that can be readily redispersed in aqueous media but does not require the processing of large volumes of liquid during spray drying.
SUMMARY OF THE INVENTION
This invention is a method of producing microcrystalline cellulose that can be readily redispersed in aqueous media but does not require the processing of large volumes of liquid during spray drying. The method comprises the steps of:
a) preparing an aqueous dispersion comprising maltodextrin and microcrystalline cellulose; and
b) spray drying the aqueous dispersion to produce a coprocessed microcrystalline cellulose/maltodextrin composition;
in which:
the maltodextrin comprises about 40% to about 60% by weight of the total maltodextrin and microcrystalline cellulose in the dispersion and the microcrystalline cellulose comprises about 40% to about 60% by weight of the total maltodextrin and microcrystalline cellulose in the dispersion;
the dispersion comprises about 10% to about 30% total solids; and
the coprocessed microcrystalline cellulose/maltodextrin composition is a free flowing powder.
In another embodiment, the invention is a dry blend comprising carboxymethyl cellulose and the coprocessed microcrystalline cellulose and maltodextrin composition.
This invention is particularly advantageous because the dispersion of microcrystalline cellulose and maltodextrin can be spray-dried at a solids content of up to about 30%. If carboxymethyl cellulose were used in place of maltodextrin, the through-put would be much lower because microcrystalline cellulose/carboxymethyl cellulose dispersions of this concentration cannot be spray dried. The invention reduces processing costs because the volume of mixture that must handled and the volume of water to be evaporated are greatly reduced.
When dispersed in a liquid, a coprocessed microcrystalline cellulose/maltodextrin composition will not substantially increase the viscosity of the liquid. However, when carboxymethyl cellulose is added, the viscosity of the liquid will increase and the composition will be stabilized.
DETAILED DESCRIPTION OF THE INVENTION
All percentages set forth in the specification and claims are percentages by weight unless otherwise indicated.
Coprocessed Microcrystalline Cellulose and Maltodextrin
A coprocessed microcrystalline cellulose/maltodextrin composition may be prepared by preparing an aqueous dispersion of microcrystalline cellulose and maltodextrin and spray drying the dispersion. Maltodextrin serves as a barrier dispersant to preserve the colloidal properties of the microcrystalline cellulose when the combination of materials is spray dried. It prevents hornification of the microcrystalline cellulose particles during spray drying and when being redispersed in a liquid.
The maltodextrin should have a dextrose equivalent (DE) of from about 4 to about 20. Generally, the higher the dextrose equivalent, the higher the solubility of the maltodextrin in water. However, if the dextrose equivalent exceeds 20, then the resultant coprocessed product might be too sticky to be of commercial use. If the dextrose equivalent is below about 4, the solubility of a liquid dispersion will be adversely affected so that the dispersion might be too viscous to process.
Microcrystalline cellulose may be obtained from a raw material such as wood, wood pulps such as bleached sulfate and sulfate pulps, cotton, flax, hemp, bast or leaf fibers, regenerated forms of cellulose, soy hulls, corn hulls, nut hulls, and the like. It is generally prepared from the raw material sources by a combination of a chemical degradation and mechanical attrition. Chemical degradation may be accomplished by any of several well-known methods. For example, the raw material may be rendered into a cellulose rich pulp, and the pulp hydrolyzed with dilute mineral acid. Partial removal of water by, for example, filtration produces a wet cake.
Wetcake is sheared to reduce the average particle size of from about 0.1 to about 10 microns. Shearing of the cellulose particles to form colloidal particles may be accomplished using any suitable apparatus such as a Silverson® mixer. The choice of mixer will be apparent to one skilled in the art taking into consideration the particle size desired. The amount of microcrystalline cellulose that may be present may vary widely but is preferably from about 62% to about 86%.
The aqueous dispersion containing maltodextrin and microcrystalline cellulose may be prepared by shearing microcrystalline cellulose wetcake in a mixer, such as a Silverson® mixer, adding the maltodextrin, and mixing to produce a uniform composition. If necessary, water is added to the dispersion to produce a dispersion with the desired solids content. The maltodextrin comprises about 40% to about 60% of the total microcrystalline cellulose and maltodextrin in the dispersion and the microcrystalline cellulose comprises about 40% to about 60% of the total microcrystalline cellulose and maltodextrin in the dispersion. When the coprocessed composition comprises less than 40% by weight maltodextrin, the it will not be satisfactory because the maltodextrin will not be present in an amount sufficient to operate as a barrier dispersant and prevent agglomeration of the microcrystalline cellulose particles. If more than about 60% of the maltodextrin is present in the coprocessed composition, the amount of microcrystalline cellulose present will be insufficient to obtain the proper colloidal content in a liquid.
In a preferred embodiment, microcrystalline cellulose and maltodextrin are each present in an amount of from about 45% to about 55%, based on the total amount of microcrystalline cellulose and maltodextrin present in the composition. In a more preferred embodiment, microcrystalline cellulose and maltodextrin are each present at about 50%.
The dispersion is then spray dried to form a free flowing powder. The dispersion is typically spray dried at an inlet temperature of from about 200° C. to about 280° C. and an outlet temperature of from about 100° C. to about 120° C. The dispersion typically comprises about 10% to 30% solids (i.e., maltodextrin and microcrystalline cellulose), preferably about 20% to about 30% total solids, and more preferably about 25% to about 30% total solids. Following spray drying, the microcrystalline cellulose/maltodextrin composition typically comprises about 3
Buliga Gregory S.
Tuason Domingo C.
Venables Aaron C.
Bhat Nina
FMC Corporation
FMC Corporation
LandOfFree
Texture and stabilizer composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Texture and stabilizer composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Texture and stabilizer composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2935588