Systems and methods for freezing, storing and thawing...

Refrigeration – Processes – Congealing flowable material – e.g. – ice making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S356000, C249S127000

Reexamination Certificate

active

06786054

ABSTRACT:

TECHNICAL FIELD
This invention relates, in general, to biopharmaceutical materials, preservation methods and systems, and more particularly to systems and methods for transporting, freezing, storing, and thawing of biopharmaceutical materials.
BACKGROUND ART
Preservation of biopharmaceutical materials is important in the manufacture, storage, sale and use of such materials. For example, biopharmaceutical materials are often preserved by freezing between processing steps and during storage. Similarly, biopharmaceutical materials are often frozen during transportation between manufacturing locations.
Currently, preservation of biopharmaceutical material often involves placing a container containing liquid biopharmaceutical material in a cabinet freezer, chest freezer or walk-in freezer and allowing the biopharmaceutical material to freeze. Specifically, the container is often placed on a shelf in the cabinet freezer, chest freezer or walk-in freezer and the biopharmaceutical material is allowed to freeze. These containers may be stainless-steel vessels, plastic bottles or carboys, or plastic bags. They are typically filled with a specified volume to allow for freezing and expansion and then transferred into the freezers at temperatures typically ranging from negative 20 degrees Celsius to negative 70 degrees Celsius or below.
To ensure efficient use of available space inside the freezer, containers are placed alongside one another and sometimes are stacked into an array with varied spatial regularity. Under these conditions, cooling of the biopharmaceutical solution occurs at different rates depending on the exposure of each container to the surrounding cold air, and the extent to which that container is shielded by neighboring containers. For example, containers placed close to the cooling source or those on the outside of an array of containers would be cooled more rapidly than those further away from the cooling source and/or situated at the interior of the array.
In general, adjacent placement of multiple containers in a freezer creates thermal gradients from container to container. The freezing rate and product quality then depend on the actual freezer load, space between the containers, and air movement in the freezer. This results in a different thermal history for the contents of the containers depending on their location in a freezer, for example. Also, the use of different containers for individual portions of a single batch of biopharmaceutical material may cause different results for portions of the same batch due to different thermal histories resulting from freezing in a multiple container freezer, particularly if the storage arrangement is haphazard and random. Another consequence of obtaining a range of freezing times is that certain containers may freeze so slowly that the target solute can no longer be captured within the ice phase, but remains in a progressively smaller liquid phase. This phenomenon is referred to as “cyroconcentration.” In some cases such cyroconcentration could result in precipitation of the biopharmaceutical product, thus resulting in product loss.
Disposable containers such as plastic bags or other flexible containers often are damaged, leading to loss of the biopharmaceutical material. Particularly, the volumetric expansion of the biopharmaceutical materials during freezing could generate excessive pressure in an over filled bag or in a pocket of occluded liquid adjoining the bag material, possibly leading to rupture or damage to the integrity of the bag. Moreover, handling of such disposable containers, such as plastic bags, during freezing, thawing, or transportation of these containers often result in damage thereof, due, for example, to shock, abrasion, impact, or other mishandling events arising from operator errors or inadequate protection of the bags in use.
Thus, there is a need for systems and methods for freezing, storing, and thawing of biopharmaceutical materials that are controlled, do not result in loss of biopharmaceutical material, but instead create conditions conducive to preserving the biopharmaceutical material in a uniform, repeatable fashion in a protected environment.
SUMMARY OF THE INVENTION
The present invention provides, in a first aspect, a container for freezing, storing and thawing a biopharmaceutical material, which is receivable in a frame for supporting and protecting said container. The container includes a material adapted to receive the biopharmaceutical material therein for freezing, storing and thawing in liquid or frozen state, and the container includes a flange connectable to the support frame for supporting the flexible container in the support frame.
The present invention provides, in a second aspect, a system for freezing, storing and thawing a biopharmaceutical material which includes a container and a frame. The container is adapted to receive the biopharmaceutical material therein and the container includes a flange. The frame is adapted to receive the container and is engagable with the flange.
The present invention provides, in a third aspect, a method for freezing, storing and thawing a biopharmaceutical material. The method includes providing a container adapted to contain the biopharmaceutical material for freezing, storing and thawing, and positioning the container in a frame for supporting and protecting the container.
The present invention provides, in a fourth aspect, a system for freezing, storing and thawing a biopharmaceutical material which includes a container adapted to receive the biopharmaceutical material therein for freezing, storing and thawing. The container is adapted to receive a support member for supporting the container.
The present invention provides, in a fifth aspect, a method for freezing, storing and thawing a biopharmaceutical material. The method includes providing a container adapted to contain the biopharmaceutical material for freezing, storing and thawing and connecting a sleeve of the container to a support member.
The present invention provides, in a sixth aspect, a system for freezing, storing and thawing a biopharmaceutical material which includes a container adapted to receive biopharmaceutical material therein for freezing and subsequent thawing. The container is configured to conform to the shape of an interior of a temperature control unit, when the container is substantially filled with the biopharmaceutical material, and/or the shape of a protective structure adapted to receive the container.
The present invention provides, in a seventh aspect, a system for freezing, storing and thawing a biopharmaceutical material which includes a flexible container adapted to contain the biopharmaceutical material. The flexible container is adapted to substantially conform to a shape of a first interior of a temperature control unit and is adapted to substantially conform to a second interior of a storage vessel.
The present invention provides, in a eighth aspect, a method for freezing, storing and thawing a biopharmaceutical material which includes providing a sterile container adapted to contain the biopharmaceutical material for freezing and configuring the sterile container to conform to a shape of an interior of a temperature control unit.
The present invention provides, in a ninth aspect, a system for storing a biopharmaceutical material which includes a flexible container configured to contain the biopharmaceutical material for freezing wherein the flexible container further includes means for engaging with at least one of a temperature control unit and a storage vessel for supporting the flexible container.
The present invention provides, in a tenth aspect, a system for freezing, storing and thawing biopharmaceutical material which includes a flexible container, a conduit, and a temperature control unit. The flexible container is adapted to receive a liquid biopharmaceutical material therein for freezing, storing and thawing, wherein the container fully encloses an interior portion for receiving the biopharmaceutical material. Also, the container is con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for freezing, storing and thawing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for freezing, storing and thawing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for freezing, storing and thawing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3186967

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.