SYSTEM, METHOD, AND PROGRAM FOR PROVIDING WILL-CALL...

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S229000, C713S152000

Reexamination Certificate

active

06385728

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a network of computer systems, including but not limited to the Internet environment, and more specifically for securely printing a file retrieved from a separate file source in the network environment.
2. Description of the Related Art
A network environment can comprise an endless number of configurations, including but not limited to computer systems communicatively connected to the Internet, to a wide area network, to a local area network, using TCP/IP connections, using token ring connections, etc. Likewise, the computer systems themselves may vary from network terminals with minimal storage and CPU processing functionality to personal computers, including laptop computers to workstations to servers to mainframes. The relationship among the computers can vary, e.g., as being independent from each other, or having distributed relationships, or having client/server relationships, etc. Some or all of the files may be stored in a dedicated file storage system, e.g., a file server, database management system, etc., or within the storage of each system. Likewise, printers may be attached to any or all of the systems and/or there may be print servers to which the computer systems can be communicatively linked.
There are many different types of security issues that arise in a network environment. Some files must be encrypted at the sending end and decrypted at the receiving end to ensure that the file contents are not intercepted by an unauthorized entity during the transmission. This security feature, along with other security features that are known, can guarantee that a file has not been tampered with or can ensure the identity of the sender or receiver. Some of these security features are further discussed below.
Cryptography
Conventional cryptography, or in other words traditional symmetric cryptography, is used to maintain the privacy of the information contents. Conventional cryptography requires that the sender and receiver of an encrypted message share the same secret key. The same key is used to both scramble (encrypt) and unscramble (decrypt) information. In 1977, the National Bureau of Standards approved a block cipher algorithm referred to as the Data Encryption Standard (DES). Binary-coded data is protected by using the DES algorithm in conjunction with a key. An authorized user must have the key that was used to encipher the data in order to decipher it. Unauthorized recipients of the ciphered information content who may know the DES algorithm but who do not know the key cannot decipher the information content.
The major problem with this method is guaranteeing that both sender and receiver have the key, but no one else does. Sharing the key requires that one party send it to the other. However, since most communication networks cannot be trusted, the key itself must be encrypted. If it is sent in the clear, there is a danger that someone eavesdropping on the line could get the key and then be able to decode messages sent between the two parties. Others have sent the key via registered mail, which slows the communication process down, and begs the question of why not just send the message registered mail if time is not of the essence.
As described above, to protect the information content from unauthorized recipients, the key has to be kept secure from unauthorized users. Thus, the security of the contents depends upon the security of the key. As such, the key has to be distributed to authorized users in a secure manner.
Public Key Cryptography
Public key cryptography was first introduced by Whitfield Diffie and Martin Hellman of Standford University in 1976. It not only can be used to ensure the privacy of transmitted messages, but it can also be used in other applications, including digital signatures.
For ensuring the privacy of transmitted messages, public key cryptography does solve many of the problems, discussed above, of securely distributing the key used in conventional cryptography. Public key cryptography is based on two keys, a private key and a public key, that work together. A person's public key is openly made available to others, while their private key is kept secret. One key is used for ciphering and the other key is used to decipher information content. For each encryption key there is a corresponding, but separate and distinct, decryption key. Messages encrypted with a person's public key can only be decrypted with that person's private key. Even if one key is known, it is not feasible to compute the other key.
In a public key system, it is possible to communicate privately without transmitting any secret key. For example, the encryption key for each user is made public by being distributed or published. Anyone desiring to communicate in private with a recipient merely encrypts the message under the recipient's public key. Only the recipient, who retains the secret decrypting key, is able to decipher the transmitted message.
A combination of conventional cryptography and public key cryptography allows a secret key to be sent securely to an intended recipient. The sender encrypts a message with the secret key using the recipient's public key. The recipient then uses the recipient's private key to decrypt the message and to get the secret key for other transmissions. Since public key encryption is slower than secret key encryption, this approach allows subsequent transmissions to use the faster conventional secret key cryptography approach.
Digital Signatures
In these cryptographic systems, there is sometimes still a need to verify that the sender of a received message is actually the person named in the message. Digital signatures, which are based on public key cryptography, are used as a means to authenticate the sender of a message. A digital signature allows a digital message to be signed so that any receiver of a digitally-signed electronic message can authenticate the sender of the message and verify the integrity of the signed message. That is, the recipient is assured that the message is received as sent, and that it is not a forgery.
To ensure that the original true sender sent the message, a process just the opposite of the one used to ensure a private communication using public key cryptography described above is used. For example, a user who has made public a public key can digitally sign a message by encrypting the message, or a hash of it, with the user's private key before transmitting the message. Recipients of the message can verify the message or signature by decrypting it with the sender's public encryption key. This process is just the opposite of conventional cryptography in that the message is first encrypted by the sender using the sender's private key, and decrypted by the recipient using the sender's public key. Anyone who has the sender's public encryption key can read the message or signature. Any such recipient is assured of the authentication of the creator of the message since only the sender having the secret private key could have created the message or signature. The recipient is also assured that the message has not been altered since it was first created and the digital signature was attached to it. Any recipient can authenticate the signature and verify the integrity of the message by using only the signer's public key.
In the above example, the digital signature was the encryption, using the sender's private key, of the message itself. In the Digital Signature Standard (ANSI X9.30 Part I), a person's digital signature is a fixed-length string of bits that are attached to an electronic message of any length. To create a fixed-length digital signature, a hashing function is used that converts a message of any length to the same fixed-length hash, or digest, of the message. The Secure Hash Algorithm (SHA) is a known hash function that is part of the Digital Signature Standard. This hash of a message is like a “fingerprint” in that it is practically impossible for two

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

SYSTEM, METHOD, AND PROGRAM FOR PROVIDING WILL-CALL... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with SYSTEM, METHOD, AND PROGRAM FOR PROVIDING WILL-CALL..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SYSTEM, METHOD, AND PROGRAM FOR PROVIDING WILL-CALL... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2863283

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.