System for increasing data transfer rate using sychronous...

Electrical computers and digital data processing systems: input/ – Input/output data processing – Direct memory accessing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S025000, C710S035000, C710S060000, C710S061000, C709S212000, C713S400000

Reexamination Certificate

active

06175883

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to data transfer between a host device and a peripheral drive device via a bus. More particularly, the invention relates to an improved method for performing synchronous direct memory access, DMA, data transfers at an increased data rate.
BACKGROUND
Data transfer rates between a host device and peripheral drive devices within a personal computer, PC, system are limited by the bus architecture interconnecting the devices. One type of bus commonly used to interconnect or interface the peripheral drive device to a system bus of a PC is an ATA bus, which is a disk drive interface originally designed for the ISA bus of the IBM PC/AT. The ATA bus was first configured using LS-TTL (Low-power Schottky transistor-transistor logic) gates to drive an 18 inch cable. The slow edges of the LS-TTL gates and the short cable length worked adequately in the then existing systems. However, as PC systems have become faster and more complex, the definition of the ATA bus has been expanded to include operating modes performing faster data transfer rates, and hardware designers have often extended the ATA cable length to well over 18 inches. For example, PIO (programmed I/O) modes now include PIO modes
0
-
4
. Modes
0
,
1
and
2
correspond to the ATA interface as originally defined, while PIO Mode
3
defines a maximum data transfer rate of 11.1 MBytes/sec and PIO Mode
4
defines a maximum transfer rate of 16.7 MBytes/sec. Similarly, new DMA modes have been defined. Multiword DMA Mode
0
corresponds to the original interface, while DMA Modes
1
and
2
provide faster data transfer rates. Multiword DMA Mode
2
has the same maximum transfer rate as the new PIO Mode
4
.
These new operating modes require higher performance from the ATA bus, resulting in an effort to increase data transfer rates by reducing cycle times. The effort to reduce cycle times has been accomplished by increasing edge rates. The increased edge rates together with the increase in ATA cable length have in turn led to the emergence of weaknesses in the original ATA cabling configuration. These weaknesses affect the integrity of the signals transmitted over the cable. Of particular concern are excessive ringing and crosstalk between signals, and timing/propagation delays which can lead to system failure and/or data loss. Increased edge rates and excessive cable length cause these problems. Thus, the data transfer rate of valid usable data is restricted by limitations inherent to the structure of the ATA bus.
The increased edge rates and excessive cable length are problematic to the ATA bus because it is a poorly terminated bus structure design. The standard 18 inch ATA bus cable is generally modeled as a single-ended transmission line with a characteristic impedance typically of about 110 ohms and a propagation velocity typically of about 60% c. According to transmission line theory, ringing occurs when the termination impedance does not match the characteristic impedance of the cable. The amplitude of ringing is increased with a greater mismatch of impedances. Ringing of sufficient amplitude on signal and data lines of the ATA bus can cause false triggering and excessive settling delays which can lead to system failure and/or data loss.
The occurrence of ringing is especially problematic for data transfers over an ATA bus in PC systems because digital information is being transferred over a transmission line. According to another aspect of transmission line theory, information to be transmitted over the transmission line is input as a waveform. Due to the characteristic impedance and length of the transmission line, the waveform output from the transmission line has some distortion. In analog transmissions where the input waveforms are generally sine waves, the output waveform is typically distorted by a phase shift which can be corrected with relative ease. However, in digital transmissions, the input waveforms are generally some type of square wave, since recognition of an edge transistion is what is important due to the fact that information transmitted is in the form of 1's and 0's. Distortion of these square waves is evident as ringing, which results in a waveform in which the edge transistions cannot be clearly recognized. Thus, chances for false triggering, as mentioned above, are likely and symptomatic of digital transmissions.
The problem of increased ringing has become more prevalent recently because the bus architecture of the modem PC has changed to accommodate increased processor and drive speeds. As processor bus speeds have increased from 8 MHz to 33 MHz and disk drives have increased in speed, it has become necessary to update the ATA standard to allow for faster data transfer rates. To reduce propagation delay, some manufacturers have increased the output drive of the host in order to slew the output signal faster with the capacitive load of the cable. This has been accomplished by implementing the ATA interface chips with fast CMOS processes instead of the low speed TTL devices used in the first ATA buses. As a result, the output impedance has decreased, and the edge rates on the ATA bus have decreased to 1 to 2 ns or less, as opposed to a 5 to 6 ns range of the TTL devices. These fast edges without sufficient terminations have aggravated the ringing on the bus to the point that many system/drive combinations fail to work.
Crosstalk occurs when switching on one signal line causes induced signals in an adjacent or nearby line. A signal couples into an adjacent line by two mechanisms: coupling capacitance and mutual inductance. As a switching signal wavefront propagates down a cable, it couples energy into the adjacent line. Once the energy is in the second line, it propagates in both directions: toward the receiver and toward the source. The magnitude of the coupled signal is proportional to the rate of change of the signal in the primary line. Additionally, the amplitude of the coupled signal is proportional to the total amount of coupling capacitance and mutual inductance, and is therefore proportional to cable length. These crosstalk characteristics make it important to control the slew rate and cable length of newer ATA bus drivers because fast edge rates and resulting ringing on the data lines can couple by crosstalk into adjacent control lines, and cable lengths over 18 inches increase the probability of crosstalk.
An additional concern associated with the poor termination and cable length of an ATA bus design is propagation delay which is further aggravated by cable length violations. As discussed above, the ATA bus was originally defined to have a maximum length of 18 inches. However, today, system designers are hard pressed to design a system in which a host device can be connected to a peripheral drive device within 18 inches. Moreover, some systems are being implemented with dual-ATA interface ports for sharing two ATA cables. These ports are not completely independent of each other, and dual-porting results in an ATA cable which is effectively 36 inches long. These increased cable lengths impose propagation delays associated with the host and peripheral drive devices sending control and data signals back and forth to each other. These propagation delays ultimately affect the data transfer rate and overall performance of the bus.
A further concern related to data transfers over the ATA bus is data integrity. It is important that the data transferred over the bus is valid, and thus there is a desire to provide error detection capability which is reliable and which can be easily implemented. Since words made up of data bits are being transferred over the ATA bus, a bit oriented error detection approach is more practical than a symbol oriented error detection approach. However, conventional bit oriented error detection is impractical for data transfers occurring over the ATA bus, because the conventional bit oriented error detection is a bit-serial approach. The conventional bit error detection procedure generates a cyclic redundancy c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for increasing data transfer rate using sychronous... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for increasing data transfer rate using sychronous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for increasing data transfer rate using sychronous... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2436407

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.