Telephonic communications – Centralized switching system – Call distribution to operator
Reexamination Certificate
1999-07-09
2003-04-22
Tieu, Benny Q. (Department: 2642)
Telephonic communications
Centralized switching system
Call distribution to operator
C379S266010
Reexamination Certificate
active
06553113
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to a system and method for routing phone calls in a service center that integrates telephony with computers to provide a positive and personalized service environment that increases caller recognition provides cross-selling benefits through proactive servicing and spreads cost by supporting partners associated with the call center provider.
BACKGROUND OF THE INVENTION
It is increasingly common that consumers seek service from business concerns using the telephone. For example, a consumer seeking to place an order, schedule a delivery, file a complaint, or query an account balance may place a call to a centralized number provided by a business concern. It is well known that businesses often provide such numbers as so-called toll-free “800” numbers or the like.
Such toll free sites may be staffed by a series of agents who have been trained in customer service. While most agents will have generalized training and knowledge in dealing with customers, they typically have different levels of experience and training with regards to particular skill sets. For example, certain agents will have extensive experience with one type of product or transaction, while other agents will have experience with different products or transactions. Thus, agents may have different skill sets. Two agents may have familiarity with a given product or transaction, but may have a different level of skill for the given item. Thus, agents may have different skill levels for a given skill set.
Additionally, certain agents may have specialized skill sets not readily adapted to training, but still very important to certain customers. For example, some agents may have fluency in certain languages, such as Spanish or French.
Turning to the other side of the customer service interaction, each customer may need a different type of service or transaction and, moreover, each customer may have certain other non-transaction specific needs. For example, in the context of a credit card provider, one customer may seek to execute a balance transfer from one card account to another. A second customer may seek to increase his/her credit limit. Thus, these two customers have different service needs. Consequently, each may need to be routed to a service specialist with the appropriate skill set, i.e., to execute a balance transfer or to process a credit card limit increase.
Some toll free sites are so-called “virtual call centers,” whereby calls are routed to agents at call centers at different geographic locations. These systems have significant drawbacks in their ability to properly route calls. Often a customer's particular needs are not fully ascertained until after a call has been routed to a call site. It is not uncommon that a call will have to be rerouted to a different site because a qualified agent does not exist or is occupied at that site. In the example given above, the customer seeking a limit increase may be routed to a first site that has no available agents with that skill set. The result is that the call routing system must “pull back” the call to reroute it to a second site. This ties up system resources (e.g., ports at a peripheral device at the first call site) and often results in customer dissatisfaction. This problem, referred to as “site interflow,” is a significant drawback in conventional systems.
Having routed the call to a second site with an agent qualified to execute limit increases, the call routing system might then learn that this customer requires an agent with fluency in Spanish. The call routing system may learn this when the customer first talks with an agent. Or the customer may be first be routed to a “front-end” interactive voice response unit (IVR or VRU) at the call site. The customer may then enter digits in response to a menu asking whether the customer has special language requirements. In this example, the call routing system may now be required to route the customer to a third call site because the second site has no agent fluent in Spanish and also qualified to execute limit increases. Again, system resources are tied up and the customer is may be further irritated by the delay in servicing the call.
In short, conventional systems' inability to route calls to the best agent on the “first pass” results in two significant drawbacks. First, system resources are used suboptimally, resulting in significant costs for call routing systems that may have to handle thousands of calls per hour. Second, customer satisfaction is not maximized, resulting in lost accounts and sales. In a modem economy where service is the hallmark of successful enterprises, this is a significant disadvantage.
Another disadvantage of conventional call routing systems is their cost. Implementing a virtual call center may require costly hardware and software in the form of a central routing controller server, interexchange (IXC) long distance interface, administrative work stations, various peripherals such as automatic call distributors (ACDs) and primary branch exchange units (PBXs), and hardware for the network interface such as for a Wide Area Network (WAN). There are also significant costs associated with the software necessary for interface with the IXC, toad balancing, data management, and network interfacing (e.g., WAN system administration). There are also significant costs for the human capital required, i.e., the money required to train and pay agents and call routing system support personnel.
The high cost of implementing and operating conventional virtual call routing schemes is a significant disadvantage that may prevent smaller, undercapitalized business concerns from creating virtual call center services.
Other problems and drawbacks also exist.
According to Andrews, et. al., U.S. Pat. No. 5,546,452, a generalized call routing system is disclosed having a central controller distributing calls to agent systems based on real time status information and generalized load balancing considerations. However, the Andrews system does not solve the problems described above, nor does it achieve some of the objects and provide many the advantages of the invention described below.
SUMMARY OF THE INVENTION
For these and like reasons, what is desired is a system and method of providing a call routing system providing a virtual call center configured with centralized IVR's so that customer calls are more efficiently routed to qualified advisors without undue rerouting and queues within a call site.
Accordingly, it is one object of the present invention to overcome one or more of the aforementioned and other limitations of existing systems and methods for providing a virtual call center.
It is another object of the invention to provide a virtual call center with a virtual call center provider that is associated with a series of partners so that costs are reduced and hardware/software and human resources are shared.
It is another object of the invention to provide a virtual call center with strategic decisioning logic relying on customer behavior data or profile in order to route callers in a fashion that increases customer satisfaction and revenue.
It is another object of the invention to provide a virtual call center with proactive servicing, whereby database information and strategic decisioning logic is employed to predict other services and products of interest to a caller so that the call can be routed accordingly.
To achieve these and other objects of the present invention, and in accordance with the purpose of the invention, as embodied and broadly described, an embodiment of the present invention comprises an apparatus and method for a call routing system supporting the virtual call center provider (e.g., the main business concern) and a series of associated partners. Costs of implementation and operation are spread amongst the users. The system employs one or more banks of centralized IVR's to permit customer input information to be gathered before call routing to call sites within the virtual call center network. Site int
Dhir Nitin
Foster Thorp
Shkreli Djovana
First USA Bank, NA
Hunton & Williams
Tieu Benny Q.
LandOfFree
System and methods for call decisioning in a virtual call... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and methods for call decisioning in a virtual call..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and methods for call decisioning in a virtual call... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3096617