Electrical computers and digital processing systems: support – Computer power control – By external command
Reexamination Certificate
2000-04-25
2003-06-24
Lee, Thomas (Department: 2185)
Electrical computers and digital processing systems: support
Computer power control
By external command
C713S323000, C713S324000, C713S340000
Reexamination Certificate
active
06584571
ABSTRACT:
BACKGROUND OF THE INVENTION
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention relates to computers and particularly to methods and apparatus for power management in computers, particularly in battery-powered computers.
The major parts of computers include a central processing unit (CPU), input/output (I/O) devices such as display screens, keyboards, modems, printers, disk drives and the like, and storage (memory).
The CPU communicates with the I/O devices, with the storage and otherwise operates with addresses defined within the computer address range. Typically, addresses for I/O devices are within an I/O address range. Addresses for execution of programs without I/O reference typically are within a memory address range. Similarly, that portion of memory allocated for display is within a video memory address range.
Computers function to execute application programs such as word processing, spreadsheet and data base management programs. Typically, the computer and the application programs are under the control of a software operating system that manages the different system parts and resources including some I/O devices. For example, during the execution of an application program when the CPU wishes to check to determine if any key has been depressed on the keyboard, the CPU through a subroutine call to the operating system requests the operating system through execution of a subroutine to perform a key-actuation detection task. Since the operating system performs many such tasks, the operating system has a detailed knowledge of many activities within the computer. However, under some circumstances, application programs bypass the operating system and directly address I/O devices. Typically, each I/O device is assigned an I/O address within an I/O address range. For application programs which-directly address I/O devices without operating system calls, the operating system is not immediately aware of I/O activity. With such complex operation in computers, the task of power conservation is difficult.
The need for power conservation is well known in battery-powered computers and must be performed in a manner that does not interfere with the operation of the computer or impede users from interacting with the computer during the execution of application programs.
Conservation of power has been utilized for some parts of battery-powered computers but has been ignored for other parts of such computers. In general, power consumption is distributed in battery-powered computers among the major parts of those computers. One part with significant power consumption is the central processing unit (CPU). Another part is the input/output (I/O) devices such as display screens, keyboards, modems, printers, disk drives and the like. Still another part with significant power consumption is storage (memory).
Prior art attempts at conserving power have employed screen blanking which reduces the power to the display screen when the screen has not been used for some period of time. Typically, a timeout circuit senses changes in screen information and, if no change has occurred for a predetermined timeout period, the backlight to the screen is turned off for power reduction. While screen blanking is effective in reducing power for the display screen, no reduction results in power to the driver circuitry for the display, to the CPU, or to other parts of the computer. Furthermore, when the screen is blanked, the computer cannot be used until reset.
Other prior art attempts at conserving power consumption have focused on disk drives because the power consumption of rotating magnetic disks is high. Disk drive manufacturers have employed various schemes for reducing the power consumption of the disk drive. While such power consumption schemes are effective for the disk drive, no reduction results in power to the CPU or other parts of the computer. Computers without disk drives, such as small “notebook” computers, have no need, of course, for the conservation of power in a disk drive.
In order to extend the battery life of portable computers and to manage power in computers, there is a need for improved power management methods and apparatus in computers, particularly for power management that can be extended to many different parts and conditions of the computer.
SUMMARY OF THE INVENTION
The present invention is a method and apparatus for power management in a computer. The computer typically includes as hardware a central processing unit (CPU), storage (memory) and I/O devices and includes as software an operating system adapted to control the computer during application program execution.
The power management method and apparatus causes the computer system to enter the power conservation mode after sensing inactivity by a software monitor or by a hardware monitor.
The software monitor monitors the activity of the operating system or other software in the system. The software monitor typically is a software module linked, for example, to the operating system at boot time for monitoring subroutine calls to the operating system.
The hardware monitor monitors the hardware to detect inactivity. The hardware monitor typically is circuitry for detecting inactivity independently from the software. For example, the hardware monitor senses predetermined address ranges, such as an I/O address range and a video memory address range, and monitors the activity of addresses by the CPU to addresses within these ranges. If no data transfers occur within the specified address ranges for predetermined periods of time, then a power conservation mode is entered to conserve power in the computer system.
By using both a software monitor and a hardware monitor, the power management unit determines exactly when to enter into power conservation mode without sacrificing system performance.
In the software monitor, inactivity is determined by detecting how many “active” or “idle” function calls an application makes within some time period. In the IBM PC DOS environment, the activity status is checked, for example, no less frequently than every 50 milliseconds. There are 256 IBM PC DOS function calls and, in principle, each is labeled as “idle” or “active” and each is assigned a corresponding positive or negative number. A positive number is assigned to an “active” function call and a negative number to an “idle” function call.
The power management software monitor forms an activity measurement as a running total of the function call numbers as the function calls are made. Whenever a function call is made (either active or conservation), the power management software monitor algebraically adds the function call number to the accumulated value and determines whether the system is to remain in the active mode or be switched to the conservation mode by comparing the magnitude of the accumulated value with a function call threshold.
The function call threshold for determining activity is a variable depending on the computer system speed. To prevent the system from oscillating between the active and conservation mode due to minor changes in system activity, hysterisis is provided by using active and conservation function call thresholds. The accumulated total for the activity measurement is reset after it reaches the active threshold going in one direction or the conservation threshold going in the opposite direction as the case may be.
The active and conservation thresholds are typically unequal so that the entry and exit from conservation mode is biased. For example, in order to have the system enter the conservation mode quickly and thereby to reduce power consumption, the active threshold is set with a number greater than the number for the conservation threshold.
In one embodiment, functions that r
Cao Chun
Lee Thomas
St. Clair Intellectual Property Consultants, Inc.
LandOfFree
System and method of computer operating mode clock control... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method of computer operating mode clock control..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method of computer operating mode clock control... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3134499