Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer
Reexamination Certificate
1998-04-16
2002-04-16
Hayes, Gail (Department: 2131)
Electrical computers and digital processing systems: support
Multiple computer communication using cryptography
Protection at a particular protocol layer
C709S241000, C463S042000, C713S176000
Reexamination Certificate
active
06374357
ABSTRACT:
BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to the utilization of network services by an application client. More particularly, the present invention is directed to a system and method for regulating the use of distributed applications in a manner so that the applications can only be used in connection with the network services of an authorized network service provider.
2. The Prior State of the Art
Historically, personal computer software applications provided a stand-alone, single-user type of operating environments. However, new computer technologies and software applications have continued to enhance the computers ability to gather, process and distribute information, giving rise to the need for the interconnection and sharing of data between computers. This has resulted in the connection of computers by way of a variety of techniques, including local area networks, wide area public networks (such as the Internet) wide area private networks, direct modem links, and commercial service providers such as Microsoft Network and America Online.
Such interconnection schemes were initially designed and implemented for purposes of facilitating the exchange of data and information between computer users, i.e., exchanging data files, sending and receiving of electronic mail, etc. However, the increased availability and capability of high speed networks has resulted in the development of far more sophisticated distributed network applications. Such network technologies allow for the transparent interoperation and communication between applications that run on respective client computers connected via a particular network, and allow computer users to dynamically interact and share application data with one another.
While such distributed applications can serve any one of a number of different functions, one timely example is computer gaming applications. With this type of distributed application, a user executes a distributed game application at a standalone computer (sometimes referred to as a client). The user will then initiate access to a particular communications network host (referred to herein as a Network Service Provider, or “NSP”) such as may be provided by, for example, Microsoft Network, America Online, or a private gaming network, which in turn provides access to the network services for use by the distributed application. The application will then proceed to interoperate/communicate with other similarly connected computers running that particular distributed application, via the NSP network. For instance, game data and game state information is exchanged between the network connected computer participants via the network services provided by the NSP. In this way, each of the computer users/players can simultaneously compete and/or otherwise interact with one another in the manner defined by the particular distributed game application.
Currently, there are a variety of network service providers (sometimes referred to as Online Service Providers) that provide such network “host” services for these types of distributed applications. It will be appreciated that as the availability, usage, and popularity of these types of distributed applications expands, there is a corresponding increase in demand for the services provided by the NSPs—an obvious economic benefit to the NSP. It would be desirable for the application vendor to share in this benefit, since it is the application that is generating an increase in demand for NSP services. Similarly, it would be desirable for an NSP to negotiate with an application vendor to be the exclusive network service provider for a particular application. However, until now there has not been a suitable solution for arranging such an exclusive arrangement.
Instead, an end user typically need only purchase a copy of the distributed application (e.g., a computer game), and the user is then free to run it on any NSP network that supports the communication protocols utilized by that application. Since such applications typically support widely used, industry standard protocols such as TCP/IP, IPX, etc., the application user can often select from any one of a number of NSP's on which to utilize the application. As such, the application vendor has no practical way of limiting its application to a selected NSP.
Current approaches that have been used to restrict a distributed application's use to a specific NSP have not been entirely satisfactory or practical. One approach has been to preconfigure the application so that it is operable only in connection with a particular NSP. For instance, the application software itself will be customized to have a particular communications front end so that the application is only capable of running on the network services provided by a specific NSP. Use of the application is limited to that provider because the software is incompatible with the networks of other NSPs. While the approach allows for the desired exclusive arrangement between a vendor and an NSP, the approach is severely limited in flexibility, and therefore does not provide a practical business solution. For instance, in the event that the application vendor seeks to develop relationships with other NSPs, or seeks to subsequently develop an exclusive arrangement with a different NSP, the underlying software must be rewritten, reconfigured or otherwise manipulated so as to be capable of running via the new NSP's network. This of course would include a rewrite or reconfiguration of all existing applications—an impractical, time consuming and expensive process.
What is needed then is a method for regulating the use of a distributed application on preselected NSP(s) that is flexible enough so as to permit the application vendor to easily change to different authorized NSPs without requiring any customization or reconfiguration of the underlying application. Moreover, the method should ensure that when authorization is granted to one exclusive NSP, other non-authorized NSPs are prevented from providing unauthorized network services to that particular application. Preferably, the authorization scheme should easily transferable, so that authorization can be granted to one particular NSP for a certain amount of time, and then be granted to other NSPs after that prescribed time period has expired. Also, an authorization scheme should not be susceptible to counterfeiting or alteration. Allowing an application vendor this ability to selectively and safely provide authorization to a NSP will allow for exclusive and flexible business arrangements resulting in new, synergetic business models between NSP's and application vendors. For instance, application vendors will have access to a new revenue stream from NSPs who are interested in supporting the vendor's application. At the same time, NSPs will have an opportunity to add value and generate new demand for their services. For example, a NSP can be the exclusive host for a new, high demand premium application, and thereby gain new subscribers wishing to utilize that application.
BRIEF SUMMARY AND PRINCIPAL OBJECTS OF THE INVENTION
The foregoing problems in the prior state of the art have been successfully overcome by the present invention, which is directed to a system and method for regulating a network service provider's ability to host a particular distributed application. More particularly, the present invention defines a system and method whereby an application vendor is able to pre-define a service provider verification data set, or “permit,” for a particular distributed application, such as a computer game application. The application vendor can then issue this “permit” to a selected NSP. The permit authorizes the NSP to provide network communication services to that particular distributed application. Further, use of the permit prevents other non-authorized NSPs from attempting to provide network services to that particular application.
The permit preferably contains at least one unique identifier that provides the ability to auth
Mohammed Sohail B.
Olson Kipley J.
Hayes Gail
Microsoft Corporation
Revak Christopher A.
Workman & Nydegger & Seeley
LandOfFree
System and method for regulating a network service... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for regulating a network service..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for regulating a network service... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2928064