System and method for pharmacy validation and inspection

Optics: measuring and testing – By dispersed light spectroscopy – Utilizing a spectrometer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S328000, C250S339070, C250S372000

Reexamination Certificate

active

06771369

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains to spectrometer and reflectance data analysis and more particularly to the validation and identification of packaged pharmaceuticals in a retail setting.
BACKGROUND OF THE INVENTION
There is an ongoing and predicted long-term shortage of licensed pharmacists. Due to the increasing age of the population and the ever-increasing number of prescription medicines available, the demand for prescription drugs is growing at rate that will far exceed the capacity and numbers of licensed pharmacists. According to the National Association of Chain Drug Stores, the number of prescriptions filled between 2000 and 2005 will increase by 41%, while the number of retail pharmacists will only increase by 4.5%. The net impact of this imbalance is that pharmacists are increasingly spending more time doing clerical and administrative tasks such as verifying filled prescriptions and checking data entry done by pharmacy technicians. Since the capacity of any one pharmacist is fixed, the output of a pharmacy has become constrained. Consequently, the labor and total cost per prescription continues to rise. The December 2000 Department of Health and Human Services Report to Congress titled “The Pharmacist Workforce: A Study of the Supply and Demand for Pharmacists”, which is hereby incorporated by reference into the present application, provides an overview of the above problem.
Due to these increased demands on a pharmacist's time, and the resulting increased reliance on technicians and other non-professional staff to fill prescriptions, there is an increased chance for prescription error. While these errors may take many forms, the likelihood of a dangerous or life threatening “adverse drug event” increases proportionally with the increased chance of prescription fill error. Several studies have shown that prescription error rates are consistently in the 2% to 7% range, with a 4% error rate often cited as a reliable average. The number of deaths due to medication errors is estimated to exceed 7000 per year in the United States alone. This number does not include non-fatal conditions from drugs that also result in some form of trauma or injury. The resulting litigation costs associated with these prescription fill errors has also dramatically increased. Available information shows that settlements from such lawsuits average $500,000 per incident. A known study on this subject is the 1999 Institute of Medicine Report: “To Err is Human: Building a Safer Heath System”, the details of which are hereby incorporated by reference into the present application.
Existing pharmacy filling systems and procedures still require a human operator, whether that operator is a technician or a licensed pharmacist, to validate visually whether the drug that is delivered to the customer is correct. Thus, the human factor contributes to the majority of prescription fill errors. Existing visual verification techniques rely on comparing an electronic image of the prescribed medication, i.e. a picture of the prescribed medication retrieved from a data library, with the actual medication that is dispensed for the patient. Other systems and procedures rely on comparing the dispensed medication with that in the original manufacturer's supply container, or comparing an electronic image of the filled prescription with an electronic image of the prescribed medication retrieved from a data library. Each of these existing verification systems present similar problems.
First, these known verification methods assume that all drugs are visually distinct. This assumption causes many problems because many drugs are not, in fact, visually distinct and, in other cases, the visual differences between drugs is very subtle. For instance, manufacturers are rapidly running out of unique shapes, colors and sizes for their solid dosage form products. To further complicate the problem, generic drug manufactures are using shapes, colors, and sizes that are different than that of the original manufacturer.
Second, even though some known systems may utilize a National Drug Code (NDC) bar code to verify that the supply bottle being accessed corresponds correctly to the patient's prescription, a fraction of filled prescriptions that are never picked up are returned to the supply shelves for reuse in later prescriptions. These reused bottles will not, therefore, have a manufacturer's bar code on them. It is, therefore, impossible to incorporate such validation schemes for these unused prescriptions. Furthermore, in these circumstances, a supply bottle is not available for a visual comparison with the filled prescription.
Finally, each of these known manual verification and validation techniques requires that the pharmacist spend a significant portion of his day performing these administrative or clerical tasks and allows less time for patient consultation and other professional pharmacist activities. This fact in itself is considered one of the leading reasons for the decline in graduation rate of professional pharmacists. The ability to allow the pharmacist to focus more on patient counseling rather than clerical and administrative duties is widely seen as an important promotional effort to meet the increasing demand for professionally trained pharmacists. Similarly, personal service by a pharmacist is cited in the 2001 Chain Pharmacy Industry Profile as one of the main reasons that a customer will choose any particular pharmacy.
Solid dosage pharmaceuticals (e.g. pills, tablets, and capsules) each have a unique chemical composition associated with them. This is often referred to as a chemical signature or fingerprint. Pharmaceuticals with varying dosage levels of the same active ingredient may have unique chemical signatures as well. Even slight variations in the active ingredient will produce a unique chemical signature. In that regard, most pharmaceuticals can be identified accurately by the use of some form of chemical analysis. This same methodology may be applied to other forms of medication (e.g. liquids, creams, and powders).
While there are many forms of chemical analysis, Near-Infrared (NIR) spectroscopy is one of the most rapidly growing methodologies in use for product analysis and quality control. For instance, NIR spectroscopy is being increasingly used as an inspection method during the packaging process of pharmaceuticals or food products. More and more often, this technique is augmenting or even replacing previously used vision inspection systems. For example, a system that utilizes a combined visible and NIR spectroscopy inspection system can be used to inspect a pharmaceutical product for, among other things, chemical composition, color, and dosage level.
Particularly with solid dosage pharmaceutical products, while a group or package of products may look identical in the visible portion of the spectrum each product may have a unique chemical signature in the near-infrared wavelength range (800-2500 nm). Details of packaging and inspection systems that utilize NIR as an inspection technique can be found in U.S. patent applications Ser. Nos. 10/023,302, 10/023,395, and 10/023,396 filed on Dec. 20, 2001 and U.S. patent application Ser. No. 10/068,623 filed on Feb. 5, 2002, the details of which are hereby incorporated by reference into the present application.
What is unique about these NIR spectrographic inspection and validation systems is the completely “hands-off” approach that can be utilized, and the reduced need for operator interaction in validating the composition of packaged and filled pharmaceuticals. What is needed, therefore, is a system that can utilize the unique chemical signatures of known pharmaceuticals to validate the accuracy of the filled prescription through an NIR spectrographic or other chemical analysis technique.
More particularly, what is needed is a system that allows the replacement of the manual verification techniques that most pharmacies rely on today, thereby allowing verification and validation steps to be performed automatically

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for pharmacy validation and inspection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for pharmacy validation and inspection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for pharmacy validation and inspection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3321439

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.