System and method for performing partial array self-refresh...

Static information storage and retrieval – Read/write circuit – Data refresh

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S230030, C365S230060, C365S230080, C365S233100, C365S191000, C365S189080, C365S236000

Reexamination Certificate

active

06819617

ABSTRACT:

BACKGROUND
1. Technical Field
The present invention relates to semiconductor memory devices such as DRAMs (dynamic random access memory) and, more particularly, to a system and method for performing a PASR (partial array self-refresh) operation, wherein a self-refresh operation for recharging stored data is performed on a portion of one or more selected memory banks comprising a cell array in a semiconductor memory device.
2. Description of Related Art
Semiconductor memory devices are largely classified as dynamic random access memories (DRAM) and static random access memories (SRAM). In an SRAM, a unit cell is implemented by four transistors constituting a latching mechanism. Unless the power is interrupted, the stored data is not volatile. Thus, a refresh operation is not necessary. However, in a DRAM, a unit cell is implemented by one transistor and one capacitor, and data is stored in the capacitor. A capacitor formed on a semiconductor substrate is not necessarily completely isolated from peripheral circuits, and therefore, it is possible for the data stored in the memory cell to be altered due to current leakage. Thus, a refresh operation for periodically recharging the data stored in the memory cell is required. A self-refresh operation of a semiconductor memory device is performed while sequentially varying internal addresses by an externally applied command signal.
According to recent trends in highly integrated, large capacitance semiconductor memory devices, a plurality of memory banks are commonly incorporated within a memory chip. Each memory bank is capable of outputting a predetermined amount of data. DRAMs installed on recent systems, including cordless telephones, data banks, Pentium®-type computer combined personal data assistance (PDA) systems, utilize most memory banks during a data communication mode, while utilizing only specific memory banks for storing data necessary for the system during a standby mode. In order to implement PDA systems, which commonly operate on battery power, it is necessary to minimize power consumption.
FIG. 1
is a block diagram of circuits utilized during a self-refresh operation for a conventional DRAM. In this specification, for the sake of convenience in explanation, a DRAM having four memory banks
101

i
(i is an integer from 1 to 4) is illustrated. In
FIG. 1
, circuit portions related to a self-refresh operation are schematically shown while circuit portions unrelated to the self-refresh operation are not shown.
The respective memory banks
101

i
have a plurality of memory cells arranged in columns and rows. Row decoders
103

i
define row addresses in the corresponding memory bank. Column decoders
105
_
1
and
105
_
2
define column addresses in the corresponding memory bank. A refresh entry detector
107
detects a signal to enter self-refresh operation, and, in response, generates a refresh instruction signal PRFH. In response to a refresh instruction signal PRFH, an internal address generator and counter
109
spontaneously generates sequential addresses FRA
1
to FRAn for a self-refresh operation, with the internal addresses being sequentially varied. A switch
111
receives external addresses A
1
to An during a normal operating mode and receives the counting addresses FRA
1
to FRAn during a refresh mode, and transfers the same to the row decoders
103

i
as internal addresses RA
1
to RAn.
The self-refresh operation is executed in the following manner. A semiconductor memory device enters into a self-refresh mode in response to an externally input command signal. Then, row addresses are sequentially increased or decreased at predetermined intervals. Word lines of a memory cell are selected sequentially by varying the row addresses. The charge accumulated in the capacitor corresponding to the selected word line is amplified by a sense amplifier and then stored in the capacitor again. Through such a refresh operation, the stored data is retained without loss. This self-refresh operation consumes a large amount of current during the process of sense-amplifying the data stored in the capacitor.
In the conventional DRAM shown in
FIG. 1
, a self-refresh operation is performed with respect to all memory banks. In other words, even if data is stored in only a specific memory bank, the self-refresh operation is performed on all memory banks.
Furthermore, although separate internal voltage generators
113

i
(i is an integer from 1 to 4), including, for example, a back-bias voltage generator or an internal power-supply voltage generator, generally exist for each memory bank, they are all operated during a refresh operation.
As described above, the conventional DRAM performs a self-refresh operation with respect to all memory banks, resulting in unnecessary current dissipation. Also, if a self-refresh mode is entered, all the internal voltage generators existing for each memory bank operate, thereby further increasing current dissipation.
SUMMARY OF THE INVENTION
To address the above limitations, it is an object of the present invention to provide a semiconductor memory device, such as a dynamic random access memory (DRAM), having a plurality of memory banks, wherein the semiconductor memory device is capable of selectively performing a self-refresh operation with respect to individual memory banks and with respect to a portion of one or more selected memory banks.
The present invention provides various mechanisms for performing a PASR (partial array self-refresh) operation wherein a refresh operation for recharging stored data is performed on a portion of one or more selected memory banks comprising a cell array in a semiconductor memory device. More specifically, the present invention provides mechanisms for performing a PASR operation for, e.g., ½ ¼, ⅛, or {fraction (1/16)} of a selected memory bank.
In one aspect of the present invention, a PASR operation is performed by (1) controlling the generation of row addresses by a row address counter during a self-refresh operation and (2) controlling a self-refresh cycle generating circuit to adjust the self-refresh cycle output therefrom. The self-refresh cycle is adjusted in a manner that provides a reduction in the current dissipation during the PASR operation.
In another aspect of the present invention, a PASR operation is performed by controlling one or more row addresses corresponding to a partial cell array during a self-refresh operation, whereby a reduction in a self-refresh current dissipation is achieved by blocking the activation of a non-used block of a memory bank.
In yet another aspect of the present invention, a memory device comprises:
a plurality of memory banks each comprising a plurality of memory blocks; and
a self-refresh controlling circuit for selecting one of the memory banks and performing a self-refresh operation on one of the memory blocks of the selected memory bank.
In another aspect, a circuit for performing a PASR operation in a semiconductor memory device comprises:
a first pulse generator for generating a self-refresh cycle signal during a refresh operation of a semiconductor memory device, wherein the self-refresh cycle signal comprises a predetermined period T; and
a counter comprising a plurality of cycle counters for generating row address data in response to the self-refresh cycle signal, wherein the row address data is decoded to activate wordlines of a memory bank during the refresh operation of the semiconductor memory device,
wherein during a PASR operation, the counter is responsive to PASR control signal to disable operation of a cycle counter to mask an address bit output from the counter and wherein the first pulse generator is responsive to the PASR control signal to increase the predetermined period T of the self-refresh cycle signal.
In yet another aspect, a circuit for performing a PASR operation in a semiconductor memory device comprises:
a first pulse generator for generating a self-refresh cycle signal during a refresh operation of a semiconductor memory device;
a counter comprising a plura

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for performing partial array self-refresh... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for performing partial array self-refresh..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for performing partial array self-refresh... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282963

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.