Data processing: measuring – calibrating – or testing – Measurement system – Dimensional determination
Reexamination Certificate
2001-09-27
2003-12-16
Barlow, John (Department: 2863)
Data processing: measuring, calibrating, or testing
Measurement system
Dimensional determination
C702S150000, C702S158000, C701S301000, C342S455000, C342S357490
Reexamination Certificate
active
06665631
ABSTRACT:
CROSS REFERENCE TO OTHER PATENT APPLICATIONS
Not applicable.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates generally to systems and methods for measuring relatively short distances preferably by utilizing a combination of electromagnetic and acoustic signaling. More particularly, the present invention is especially suitable for electronically measuring the distance between a plurality of objects that may be in relative motion or formation with respect to each other and which may be moving at relatively high speeds with respect to other objects in underwater or airborne environments.
(2) Description of the Prior Art
Typical methods of electronically measuring distances between objects may include use of RADAR, LIDAR, or other systems. However, in many cases such moving objects or vehicles may contain various electronic communications equipment with the result being that the electronic systems may frequently interfere and confuse each other when multiple short-range objects are targets are in range.
Future Navy systems may deploy one or more groups of autonomous stealthy objects that may function together to perform one or more needed functions, e.g., a large-aperture electromagnetic collection system or high-bandwidth communications link. The objects and/or groups of objects may be required to move together as a unit within tens of meters while maintaining a predetermined one-to-another positional relationship or formation. When the relative separations among the individual objects are larger, an independent position locating system, e.g., GPS, RADAR, and the like, may be used by the plurality of autonomous vehicles to maintain their relative positions within a specified envelope. However, systems such as GPS and others may often have rather limited accuracy with respect to close distances of ten or twenty meters or less, processing time constraints, reception interference problems, and so forth. It would be desirable to provide a method that can be utilized to determine and/or maintain the relative position of a plurality of objects moving together in a selectable formation whereby the objects may be within a few meters of each other and whereby accuracy of the relative positions of each object may be rapidly and repeatedly calculated with accuracy in the millimeter to centimeter range being easily achievable.
Various inventors have attempted to solve related problems as evidenced by the following patents.
U.S. Pat. No. 6,160,493, issued Dec. 12, 2000, to E. T. Smith, discloses a low-cost and reliable radio warning system
12
that alerts system users to potentially hazardous conditions. The system makes use of a transmitter and at least one receiver. The transmitter generates and transmits a radio warning signal that carries a digital data sequence that includes information concerning a particular potential hazardous condition from which the transmission was initiated, such as an approaching ambulance, fire truck, bus, train, or the like. Other information, such as GPS coordinates, may also be included. Through the use of digital encoding techniques, the system's susceptibility to false alarms or “false triggers” is minimized. The radio warning signal is transmitted in burst transmissions and may use a number of signaling techniques, including spread spectrum transmission, which increases system reliability and performance even in the presence of interference or multipath distortion. System users are equipped with a receiver that receives the radio warning signal and interprets the digital data and information carried by the warning signal. The receiver alerts the system user who has received the radio warning signal of the potential hazardous condition through the use of an audible, visual or tactile alarm. Based on the simplicity of its design, the receiver is intended to be small enough to be a portable, hand held-device, or installed or mounted in a user's motor vehicle so that persons carrying the receiver and motor vehicle operators alike can be alerted of potentially hazardous conditions by receiving a radio warning signal of the present invention.
U.S. Pat. No. 6,104,671, issued Aug. 15, 2000, to Hoyt et al, discloses an apparatus and method for measuring the true distance and relative velocity between first and second objects. The apparatus comprises a transceiver located at the first object which measures a first transit time for the transmission of a first signal from a first object to a second object and for the reflection of the first signal from the second object back to the first object. The transceiver further measures a second transit time for the transmission and reflection of a second signal, the second signal being transmitted immediately upon the reflection of the first signal back to the first object. First and second transit times can be used to calculate first and second apparent distances between the first and second objects, respectively. The apparatus also includes calculating means for determining the relative velocity between the first and second objects using the first transit time and the second transit time. The calculating means calculates the true distance between the first and second objects at the time of reflection of the second signal by modifying the second apparent distance in accordance with the relative velocity between the first and second objects during the time of transmission and reflection of the second signal.
U.S. Pat. No. 5,983,161, issued Nov. 9, 1999, to Lemelson et al., discloses GPS satellite ranging signals received on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals from a fixed known earth base station received on comm2, wherein information related to one of a plurality of vehicles/aircraft/automobiles is computer processed to continuously determine the one's kinematic tracking position on a pathway with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles, to the one station, and/or to one of a plurality of control centers, and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects are detected from all directions by multiple supplemental mechanisms, e.g., video, radar/lidar, laser and optical scanners. Data and information are computer processed and analyzed in neural networks in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive autopilot mode is provided.
U.S. Pat. No. 5,798,983, issued Aug. 25, 1998, to Kuhn et al., discloses a multi-lane traffic monitoring system based on detecting the acoustic signals motor vehicles create and radiate during operation. The system comprises an array of electro-acoustic sensors for converting impinging acoustic wavefronts to analog electrical signals; a circuit to acquire, perform signal frequency component discrimination, and digitize the electrical signals at the electro-acoustic sensor array output; a circuit to perform effective spatial discrimination in the up/down road direction and in the cross-road direction in real time; a circuit to perform vehicle detection for individual lanes and to estimate or measure pertinent parameters associated with each vehicle detection from each traveled lane; and a circuit to compute for each lane, pertinent traffic flow parameters from vehicle parameters for the purpose of providing a transportation system interface. In accordance with another embodiment, a circuit is provided to auto
Barlow John
Kasischke James M.
Nasser Jean-Paul A.
Oglo Michael F.
The United States of America as represented by the Secretary of
LandOfFree
System and method for measuring short distances does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for measuring short distances, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for measuring short distances will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3119287