System and method for developing customized integration...

Error detection/correction and fault detection/recovery – Data processing system error or fault handling – Reliability and availability

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S104000

Reexamination Certificate

active

06757849

ABSTRACT:

FIELD OF THE INVENTION
The present disclosure relates to initial system integration testing and local network evaluations of computing systems. More particularly, a system and method for integrating computer system peripheral devices across one or more customer sites are disclosed.
BACKGROUND OF THE INVENTION
Computing systems may include a variety of hardware and software products available from various suppliers. Computing systems may also include a variety of peripheral devices, each having its own unique software application and/or driver to enable the device. For the purposes of this disclosure, a peripheral device may be any external device attached to a computer.
Often products made by a single supplier integrate or operate effectively with the various software applications and/or hardware devices in a computing system. However, integration difficulties may arise in computing systems that include a variety of products from different suppliers.
Integration problems occur with greater frequency in computer networks. This is particularly true of computer networks that support custom applications and peripheral drivers. Not only do integration problems occur more frequently when adding a peripheral device to a network-connected computer, the resulting down-time and increased difficulties associated with troubleshooting a particular problem can become quite expensive for the operator of the network.
The problem of integrating a variety of hardware and software products from different suppliers becomes more challenging with larger and more complex computing networks. Moreover, as suppliers introduce new network upgrades, operating systems, software applications, and peripherals to the network, integration problems may further increase. One source often encountered when troubleshooting problems associated with the introduction of a new peripheral to a network is overlooked custom software applications and drivers that may not be operable with the new peripheral. Consequently, each time that a new peripheral is added to a network, integration testing should be performed to ensure the satisfactory integration of all products in the network.
Despite the popularity of electronically transferring data representing the work product of various users via computer networks, a significant portion of the work product of network-connected computers is intended to be transformed into a hard-copy product via a printer. Relatively small desktop printers are well suited for printing drafts and for small print jobs requiring a single size paper source. Large, high-speed printers normally have a great deal of finishing and copy sheet capability, which allow a user custom printing and finishing of their work product. Mid-sized printers are also often provided as a shared resource for multiple networked computers whose operators share a set of common printing needs.
In practice, computers and other devices can be used advantageously with a network printing system of the type combining a number of client inputs, such as the computers, or the other devices, and one or more printer devices. In one example of such network printing systems, a client at one of the inputs sends an electronic representation of one or more documents that comprise a particular printing task over a local area network (LAN) to one of the printers selected for completing the task. In particular, LANs provide means by which users running dedicated processors are able to share resources such as printers, file servers, disk drives, scanners, and other similar peripheral devices.
Some of the problems associated with the integration of shared resources have been addressed by LAN managers. LAN managers have made different network protocols such as Ethernet and Token Ring transparent to devices running different network protocols. Furthermore, LANs may be provided with a variety of print drivers capable of emitting different page description languages (PDLs), which are directed to specific printer devices to complete various printing tasks. While LAN managers have made great strides in reducing the number of integration problems due to network data transfers, LAN managers are incapable of addressing compatibility issues introduced with the integration of a new peripheral such as a printing device. As a result, information technology departments responsible for operating large computing networks are still left with the task of ensuring the satisfactory integration of all products in the network when a new peripheral, such as a high-speed printer, is added to the network.
In order to ensure a high confidence level that a new device will be operable when it is brought “on-line,” many information technology departments perform extensive integration tests. Often these integration tests include regression tests, or verifications that previously operable software applications and/or drivers remain operable when the new peripheral device installed. To decrease the operational downtime associated with these integration tests, information technology departments will sometimes set up a test environment in an attempt to duplicate the actual network environment. When the costs associated with procuring, configuring, and operating a parallel test environment are prohibitive, information technology departments will often resort to performing integration tests during off peak or non-business hours by taking a portion of the network offline to perform the integration tests. This methodology of physically integrating a new peripheral, such as a high-speed printing device, into a computing network can take a significant amount of time and resources.
For example, when a user encounters a problem performing a specific task associated with a particular printer during an integration test, the user can consult the vendor's user manual or contact vendor support personnel to request assistance. Before such a call can be placed, the user must first locate the customer support telephone number, identify any authorization information that the customer support representative may require (e.g., serial number, model number, etc.), call the number, respond to all prompts put forth by an automated routing system, and wait in a queue until an appropriate customer support representative becomes available. Once a representative is available, the user can communicate the problem to the representative, receive advice as to how to resolve the problem, or wait for a required upgrade to the driver or the firmware that operates the device.
Frequently, a significant amount of time passes before the problem can be accurately identified, a solution devised and implemented, and the network tested to verify that the problem has been fixed. Generally, the response to driver and firmware changes is a total performance of a suite of various integration tests to ensure operability of the network-connected systems.
SUMMARY OF THE INVENTION
From the above, it can be appreciated that it would be desirable to have a system and method in which an integrator of a peripheral device can have an increased confidence in the operability of a new product while reducing the integration test period. The system and method for developing customized integration tests and network peripheral device usage evaluations can leverage the knowledge base of peripheral device design and support engineers to provide an effective set of integration tests appropriate for a particular industry and common applications. Furthermore, knowledge of various available hardware and software upgrades may be selectively presented to the information technology department of a peripheral device customer in response to a particular customer's network, applications, industry, users or other various identifying parameters. Moreover, to reduce delays associated with resolving integration difficulties, the integrator may apply troubleshooting methodologies developed over time by the design and support engineers familiar with a specific peripheral device.
Briefly described, in architecture, a peripheral device integratio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for developing customized integration... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for developing customized integration..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for developing customized integration... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3348371

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.