Electrical computers and digital data processing systems: input/ – Intrasystem connection
Reexamination Certificate
2001-01-25
2004-06-22
Dang, Khanh (Department: 2111)
Electrical computers and digital data processing systems: input/
Intrasystem connection
C710S107000
Reexamination Certificate
active
06754747
ABSTRACT:
TECHNICAL FIELD
This disclosure relates in general to a field of computer configurations, and more particularly to a system and method for configuring an input/output bus.
BACKGROUND
Personal computers and servers are generally designed with multiple input/output (I/O) busses with the I/O busses accommodating one or more plug-in adapter cards. An I/O bus is the data path on a computer's motherboard that interconnects the microprocessor with adapter cards in expansion or adapter card slots and allows the adapter cards to access the microprocessor and memory. The plug-in adapter cards allow for easy installation of added capabilities such as video, audio, and communications. The I/O bus allows for data to be exchanged between the computer processor and the peripheral and regulates the speed at which data is exchanged.
As the specifications for I/O busses have evolved, I/O busses support higher date transfer rates. In order to take advantage of the higher data transfer rates, both the I/O busses and the adapter cards must support the higher data transfer rates. However to support compatibility with older adapter cards that do not support the higher data transfer rates, an architected method exists whereby the I/O bus and the adapter card negotiate for the highest supported data transfer rate. Therefore to accommodate slower adapter cards, an I/O bus with multiple adapter card slots transfers data at a data transfer rate equal to the slowest adapter card on the I/O bus. If a user adds an adapter card to a bus already containing an adapter card and the adapter cards are of varying data transfer rates, then performance of the computer system suffers because the two adapter cards will not operate at each card's maximum data transfer rate but instead at the slower of the two maximum data transfer rates of the adapter cards.
A similar problem also occurs when multiple adapter cards of the same data transfer rate are located on one I/O bus when there are unoccupied I/O busses available in the computer system. Because the adapter cards operate at the same data transfer rate, the adapter cards will operate at their maximum data transfer rate. But the adapter cards have to share the total available bandwidth of the single I/O bus while the other I/O busses go unused or underused. Thereby the computer system does not operate as efficiently as it could if the adapter cards were located on separate I/O busses.
Because adapter cards and I/O busses auto-negotiate the data transfer rate to accommodate slower adapter cards on the same I/O bus, many users are not operating their computer systems at optimal or efficient levels. But configuring a computer system to operate at an optimal or even improved level is a difficult task for a majority of users. Improving the configuration of computer systems typically involves running a diagnostic on the system by someone having some degree of knowledge with computers. Indeed, even recognition that a configuration needs improving generally involves a degree of expertise. Moreover, improving a configuration requires the user to consult the user's manual on how best to configure adapter cards to achieve optimum or improved performance. If a user upgrades or has third party components within the computer system, then the user must also obtain the performance specifications for those third party components in order to improve the configuration. Therefore, improving a configuration is neither an intuitive task nor a user friendly task. Also, consumers who spend extra money to purchase advanced computer systems often do not know if the configuration is operating sub-optimally and therefore may not get as good a return as they should on their investment in the computer system.
Another difficulty in improving a configuration is that telephone servicing and technical support of computer systems for configuration problems is difficult. Non-optimized configurations cause problems in a computer system but most users are unaware that the placement of adapter cards can cause configuration problems as well as other problems. Trying to determine over the telephone the problem with a computer system is a difficult task even when the user has an idea of the problem. And without being able to physically see the computer system, the technical support staff has a hard time fixing a configuration optimization problem without the user having at least some knowledge of I/O busses and adapter cards.
SUMMARY
Therefore, a need has arisen for a system and method that visually indicates configuration problems and solutions for I/O busses.
A further need has arisen for a system and method that allows a user to achieve an optimal or improved configuration without specialized knowledge.
A further need has arisen for a system and method that allows for the servicing of configuration problems over the telephone.
In accordance with teachings of the present disclosure, a system and method are described for configuring an I/O bus which substantially eliminates or reduces disadvantages and problems associated with previous systems and methods. The system and method allows for an intuitive and uncomplicated way for a user to recognize and resolve I/O bus or adapter card configuration optimization problems.
In accordance with one aspect of the present disclosure, a system and method provides visual indication of I/O bus configuration optimization problems and solutions. A computer has a plurality of adapter cards. A user inserts the adapter cards into adapter card slots interfaced with the I/O busses of the computer. The user presses an optimization switch, located on the computer, to check the current adapter card configuration. Pressing the optimization switch activates an improvement engine within the computer to analyze the I/O busses and the adapter cards to determine an improved configuration of the adapter cards within the adapter card slots of the I/O busses. Indicators located on the computer and proximate to the adapter card slots display visual indication on whether or not the adapter card placement within the I/O busses is an optimal configuration.
More specifically, the improvement engine detects the data transfer rates for the adapter cards and the transfer rate capabilities of the I/O busses. When the user initiates optimization, the improvement engine analyzes and compares the data transfer rates of the installed adapter cards with the transfer rate capabilities of the I/O busses to determine if any of the installed adapter cards limit the I/O bus transfer rates. If an adapter card limits an I/O bus transfer rate, the improvement engine activates the indicator associated with the adapter card slot of the I/O bus receiving the adapter card to visually indicate that this particular adapter card limits the I/O bus transfer rate. In addition, the improvement engine determines where the limiting adapter card should be placed within the plurality of I/O busses so that the adapter card has a reduced impact on the I/O bus transfer rate. The improvement engine also activates the indicator associated with the adapter card slot of the I/O bus where the adapter card should be placed so as to improve the I/O bus transfer rate. Therefore, the user can see what adapter card limits the transfer rate and where to move the adapter card to improve the configuration.
The present disclosure provides a number of important technical advantages. One important technical advantage is that the system and method provides to the user visual indication regarding configuration optimization problems. The visual indication allows a user to recognize and improve upon the optimization problems. Even users who would never think to check their computer's configuration of adapter cards within the adapter card slots or suspect a configuration problem can now get a visual indication of a configuration problem by initiating optimization. In addition, the ability to visually recognize and correct configuration problems adds value to users' computers because users know that their system is running
Locklear David A.
Wright Michael A.
Baker & Botts L.L.P.
Dang Khanh
Dell Products L.P.
LandOfFree
System and method for configuring an I/O bus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for configuring an I/O bus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for configuring an I/O bus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3344391