Surgery – Instruments – Surgical mesh – connector – clip – clamp or band
Reexamination Certificate
1999-11-19
2001-06-12
Chaudhuri, Olik (Department: 2814)
Surgery
Instruments
Surgical mesh, connector, clip, clamp or band
Reexamination Certificate
active
06245083
ABSTRACT:
BACKGROUND OF THE INVENTION
As part of the treatment for trauma and many types of disease processes it is often necessary to join blood vessels to re-establish blood flow to some portion of the body or to an organ. Such joinder of blood vessels is referred to as vascular anastomosis. In the past, the primary method of closing vascular anastomosis sites has been manual suturing; this continues to be the method of choice for vascular anastomosis in most surgical subspecialties and procedures. In the majority of surgical procedures there is adequate time and the surgical site is suitable for manual suturing to be used for vascular anastomosis. For example, in most cardiac bypass surgeries, the surgical approach and anesthetic regimen traditionally employed have allowed the access and site stability necessary for manual suturing of any required vascular anastomosis.
Traditional coronary bypass surgery involves splitting and retracting the patient's sternum and opening the thoracic cavity. The invasive nature of the standard cardiac bypass surgical approach carries with it a significant cost in morbidity and mortality. Less invasive surgical methods would offer faster healing times with potentially less pain and fewer post-surgical complications.
Recently, cardiac bypass surgery has been moving toward less invasive surgical approaches. Although some endoscopic cardiac surgeries have been described, endoscopic cardiac bypass surgery has not been possible. Endoscopic cardiac bypass surgery raises at least two major technical problems related to vascular anastomosis: 1) the surgical exposure and surgical manipulation do not allow for manual suturing; and 2) anastomosis of the vessels adjacent to the beating heart must occur while the vessels are moving. Thus, the ability to anastomose vessels during endoscopic cardiac bypass surgery would provide a method of joining the vessels without the use of manual sutures while at least one of the vessels is in motion. No vascular anastomosis techniques currently in practice are suitable for performing vascular anastomosis through a small surgical window, such as those created for a laparoscope, or via endoscopy and under circumstances wherein at least one of the vessels is in motion or an organ in the surgical field is in motion.
Even without the restrictions imposed by a limited surgical exposure and a moving blood vessel, manual suturing has another problematic characteristic: it is time consuming. There has, therefore, always been incentive to find a method of vascular anastomosis that provides the strength and reliability of manual suturing but which can be performed more rapidly. Faster anastomotic techniques would lead to shorter surgical times, thereby decreasing patient morbidity and mortality stemming from surgical procedures, especially extended procedures. The present invention also addresses this problem by providing a rapid method of performing vascular anastomosis.
SUMMARY OF THE INVENTION
This invention is directed to a method of joining one or more hollow bodily organs by juxtaposing apertures in those organs in apposition and applying an amount of bioadhesive sufficient to join the organs in a manner which enables movement of blood or other material between the organs. The bioadhesive used in the invention is cross-linked proteinaceous material which is non-toxic and sets rapidly. The method is applicable to join organs in side-to-side, end-to-side or end-to-end fashion and is preferably used with blood vessels, lymphatic vessels or organs of the intestinal tract. The method is particularly useful in surgeries wherein one of the organs is moving, e.g., when surgery is performed on the artery of a beating heart.
In a further embodiment of the invention, when the method is used to join two blood vessels in side-to-side fashion, the method further comprises extending a guide wire from one vessel lumen through the apertures into the lumen of the second vessel, feeding a dual balloon catheter along the guide wire to position a balloon within the lumen of each vessel and expanding the balloons to stabilize the vessels and hold the apertures in apposition. This method is preferred for joining the internal thoracic artery to a branch of the left coronary artery while performing endoscopic cardiac bypass surgery in the presence of a beating heart.
The invention also relates to a dual balloon catheter for holding apertures in two hollow bodily organs in apposition for application of bioadhesive. Specifically the invention relates to a device having a first flexible, elongated structure with a first longitudinal lumen and proximal and distal annular inflatable balloons. The distal annular inflatable balloon is provided around a distal portion of the first elongated structure so that, in an operative position, the distal annular inflatable balloon is located within the lumen of one of the hollow bodily organs to be joined. The proximal annular inflatable balloon is provided around the first elongated structure and proximal to the distal balloon. The device may also include a separate additional longitudinal lumen in the first elongated structure for inflating the proximal and distal balloons with fluid or air. Alternatively, the first elongated structure has two additional longitudinal lumina, one lumen for each of the proximal and distal balloons. The device also optionally provides a second flexible, elongated structure, which resides within and is slidably received within the first longitudinal lumen. The distal end of the second elongated structure includes a tissue piercing tip, or alternatively, a needle. The second elongated structure optionally contains a longitudinal lumen extending from the proximal end of the second elongated structure to the distal end of the tissue piercing tip.
The second elongated structure is selectively extendable distally past the distal end of the first elongated structure and optionally locked into an extended position, thus allowing the piercing tip to be used to pierce the walls of the organs to be joined. The second elongated structure has a second, retracted, position, in which it may be locked. In the retracted position, the tissue piercing tip is retracted within the first elongated structure where it cannot damage the organ tissues.
The device may also optionally include a guide wire slidably received within the second longitudinal lumen. The guide wire is extendable into two positions: a guiding position, in which the distal end of the guide wire is extended distally beyond the distal end of the piercing tip of the second elongated structure; and a non-guiding position, in which the distal end of the guide wire is retracted inside the piercing tip.
In another embodiment the proximal and distal balloons can slide in relation to one another such that the balloons can be moved closer or further apart. In this embodiment, the device comprises a first flexible elongated structure with a proximal annular inflatable balloon disposed around the distal portion of the first elongated structure. The first elongated structure also has a longitudinal lumen extending within the first elongated structure. The device further comprises a second flexible elongated structure slidably received within the first longitudinal lumen, the second elongated structure having a distal annular inflatable balloon provided around the distal portion of the second elongated structure. When the device is in an operative position, the distal balloon is received within the second organ and the proximal balloon is received within the first organ. The device according to this embodiment thus has two positions in relation to the proximal and distal balloon: an apposed position, in which the proximal inflatable balloon and the distal inflatable balloon are close together; and an non-apposed position, wherein the distance between the proximal inflatable balloon and the distal inflatable balloon is larger than in the apposed position.
The device according to this embodiment also optionally includes a second longitudinal lumen exten
Black Kirby S.
Gundry Steve
Yüksel Ümit
Chaudhuri Olik
Cryolife, Inc.
Kenyon & Kenyon
Trinh Hoa B.
LandOfFree
Sutureless anastomotic technique using a bioadhesive and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sutureless anastomotic technique using a bioadhesive and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sutureless anastomotic technique using a bioadhesive and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2485899