Surgical microscopic system

Optical: systems and elements – Compound lens system – Microscope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S368000, C359S385000

Reexamination Certificate

active

06661571

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based upon and claims the benefit of priority from the prior Japanese Patent Applications No. 11-266687, filed Sep. 21, 1999; No. 11-288328, filed Oct. 8, 1999; No. 11-298250, filed Oct. 20, 1999; No. 11-312443, filed Nov. 2, 1999; No. 11-353212, filed Dec. 13, 1999; No. 11-354414, filed Dec. 14, 1999, the entire contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
The present invention relates to a surgical microscopic system adapted for microsurgery carried out under microscopic observation for neurosurgery, for example.
In order to ensure higher accuracy for a neurosurgical operation that uses an operating microscope, for example, treatment based on an endoscope, ultrasonic diagnostic apparatus, or any other diagnostic technique without the use of visible light is expected to be carried out for the tissues of regions that are not accessible to the operating microscope, such as the back or inside of an affected region, accompanied by real-time observation and diagnosis. Various surgical microscopic systems have been developed to meet this requirement.
Described in Jpn. Pat. Appln. KOKAI Publications Nos. 62-166310, 3-105305, 7-261094 are surgical observational systems in which an endoscope or the like is used to observe regions that correspond to dead angles of an operating microscope, and optical images of the observational regions are projected in the field of the microscope.
According to these conventional surgical observational systems, however, an observational image obtained by means of the endoscope or the like is only projected on the microscopic field, so that it is difficult for an operator to identify the endoscopic image that is actually observed through the field of the microscope. In the case where this technique is applied to a diagnostic apparatus, such as an ultrasonic diagnostic apparatus, which uses no visible light, the operator can hardly grasp an actually diagnosed part of a patient's body according to an image in the observational field only. Thus, the operator can discriminate the diagnosed region by the image only if s/he ideally superposes the characteristic features of the diagnostic image and the actual observational image, based on his or her experience.
Described in Jpn. Pat. Appln. KOKAI Publication No. 9-56669, moreover, is a surgical microscopic system with improved operativity, in which an endoscopic image or the like is displayed as a sub-picture in some other part of the microscopic field than the field portion where a main observational image is displayed. If the operator uses the system in combination with an endoscope or ultrasonic observer in this case, however, s/he is not provided with any means for grasping the region that is observed actually. Therefore, the operator can grasp the observational region only by randomly swinging the endoscope or ultrasonic probe in all directions and ideally superposing the characteristic features in comparison with a microscopic image.
Further, a method for guiding second observational means, such as an ultrasonic probe, into the field of an operating microscope is described in Jpn. Pat. Appln. KOKAI Publication No. 6-209953. According to this conventional technique, however, there is provided no method for effectively displaying the observational image of the second observational means in the microscopic field, so that the operator can correlate the microscopic optical image and the image of the second observational means only ideally.
Proposed in Jpn. Pat. Appln. No. 11-132688 filed by the assignee of the present invention (not published), furthermore, is a surgical microscopic system in which the direction of the observational field of an endoscope is indicated by an arrow or the like displayed in the field of a microscope. However, the microscopic optical image and the endoscopic image cannot be satisfactorily correlated by only indicating the observational direction in this manner. Thus, the operator can correlate these images only ideally in consideration of differences in rotation, magnification, etc. between them. If an ultrasonic observer is used as auxiliary observational means, moreover, the observational direction is not fixed, covering the circumferential angle of 360°, for example, so that it is hard to align observational image and an actual affected region.
Described in Jpn. Pat. Appln. KOKAI Publication No. 6-205793, moreover, is a display system that displays a preoperative diagnostic image by superposition on an image of an affected region by means of a half-mirror. Since the preoperative diagnostic image is superposed on the whole affected region image in this case, however, the microscopic field is too obscure to ensure a satisfactory actual surgical operation. Therefore, this system can only determine a preoperative position for craniotomy, and cannot accurately grasp information on the inner tissue in association with the affected region on a real-time basis during the surgical operation.
Described in Jpn. Pat. Appln. KOKAI Publication No. 9-24052, furthermore, is a method that uses fluorescent observation for the recognition of the position of a cerebral tumor, in order to extract the tumor securely under surgical microscopic observation. Although the observational tumor position can be securely recognized by this method, however, the obtained information is related only to the exposed surface of the tumor on the plane of observation at that time (during the extraction). Accordingly, information on the entire tumor (including information on inaccessible depths) inevitably depends on preoperative information.
Further, a navigation apparatus is proposed in Jpn. Pat. Appln. No. 10-248672 (not published). This navigation apparatus forms three-dimensional image data on the basis of image information from a CT scanner or MRI that is operated for a preoperative diagnosis, establishes a spatial correlation between a patient's head and the observational position of a microscope during a surgical operation, and supports the surgical operation in accordance with the three-dimensional image data. According to this navigation apparatus, the image of the entire tumor is obtained as slice image information for the observational point concerned during the surgical operation. However, only the slice image information for a focal position can be obtained on a three-dimensional observational plane of the operating microscope. Therefore, the operator must identify the position of the tumor by the slice image information with the progress of the operation.
With the recent development and spread of microsurgery, a technique for surgical operations for minute affected regions, moreover, operating microscopes have started to be extensively used for microsurgery in a wide variety of fields including ophthalmology, neurosurgery, otolaryngology, etc. Naturally, therefore, the operating microscopes are being improved to meet various requirements that depend on operators' surgical maneuvers. Recently, surgical operations have been changed into less invasive ones in consideration of earlier rehabilitation of operated patients, so that there is a demand for the way of observation of affected regions in finer tubules. For improved accuracy and safety of surgical operations in the depths of the body cavity, furthermore, hidden regions that are inaccessible to microscopic observation are expected to made observable.
As a technique to meet these requirements, a stereoscopic operating microscope described in Jpn. Pat. Appln. KOKAI Publication No. 62-166310, for example, is designed so that the inside of a tubule can be observed by means of first and second stereoscopic optical systems with different base line intervals. Since the two stereoscopic optical systems shares a finder optical system, moreover, an operator can alternatively observe images from the two optical systems. This stereoscopic operating microscope is provided with the stereoscopic optical system that includes the finder optical system and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surgical microscopic system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surgical microscopic system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical microscopic system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3178185

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.