Surgical instruments for stabilizing a localized portion of...

Surgery – Specula – Retractor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06758808

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to surgical instruments, and more particularly to surgical instruments useful for stabilizing a portion of a beating heart during coronary surgery.
BACKGROUND OF THE INVENTION
Surgeries to treat heart disease, and particularly narrowing and/or blockages in the coronary arteries that supply oxygen and nutrients to the heart, are increasing in numbers due to the aging of the population in America and other developed nations, as well as the diets in such nations and a variety of other factors. Classical open heart surgery techniques have been performed to bypass coronary artery blockages, often by rerouting the blood flow around the blockage, using a graft, such as from the saphenous vein. Another technique involves supplying blood to a location downstream of a blockage by anastomosing another artery to the coronary artery, e.g. a mammary artery.
These techniques have traditionally been performed only after stopping the beating of the heart, and connecting the patient's circulatory system to a heart-lung bypass machine, which supplies the patient with the needed circulatory and oxygenation functions while the heart is stopped and the surgeries are being performed. All during this process, blood flow into the chambers of the heart is bypassed. Various post-procedure side effects have been associated with the use of the bypass machine, some of which can be severe. For example, the mechanical damage to the blood tissues that results from the pumping action of the bypass machine has been associated with increased risks of postoperative embolisms and stroke. To alleviate the increased postoperative risks associated with bypass surgery, beating heart surgeries are becoming increasingly prevalent, in which the heart beat is not stopped, but maintains the circulatory flow of blood, oxygen and nutrients throughout the surgery. A bypass machine is not used.
Methods and apparatus for performing a coronary artery bypass graft (CABG) procedure on the beating hear are described in U.S. Pat. Nos. 5,894,843 and 5,727,569 to Benetti et al., the entireties of which are herein incorporated by reference thereto. In a typical CABG procedure, a blocked or restricted portion of a coronary artery, which normally supplies blood to some portion of the heart, is bypassed using a source vessel or a graft vessel to re-establish blood flow to the artery downstream of the blockage or restriction. This procedure requires a surgeon to create a fluid connection, or anastomosis, between the source or graft vessel and an arteriotomy or incision in the coronary artery. The formation of an anastomosis between two such vessels is a particularly delicate procedure, which requires precise placement of sutures in the tissue surrounding the arteriotomy and the source or graft vessel. An anastomosis between vessels of these dimensions is tedious during a stopped-heart procedure, but during a beating heart procedure it is markedly even more difficult.
As could be expected, it is very important that the target site for the anastomosis be stabilized to remain substantially motionless, even while the remainder of the heart tissue remains beating all around the target site. To this end, a number of devices have been developed which are directed to stabilizing a target site on the beating heart for the purpose of completing a cardiac surgical procedure, such as completing an anastomosis. Representative devices useful for stabilizing a beating heart are described, for example, in U.S. Pat. Nos. 5,894,843; 5,727,569; 5,836,311 and 5,865,730.
As beating heart procedures have evolved, new challenges have arisen in the design and engineering of the stabilization devices. The heart is typically accessed by way of a surgical incision such as a sternotomy or a thoracotomy. Such an incision, even with the use of one or more retractors leaves only a limited opening space within which to perform the surgical procedures. Often one ore more of the blocked or restricted arteries are located a good distance away from the access incision, requiring the stabilization device to traverse a longer and more tortuous path than if the artery were located so as to be directly exposed to the access incision. Also, distant locations can be such that the stabilization device must engage the surface of the heart at difficult angular relationships or orientations. Under the most severe conditions, devices which operate to provide a mechanical force to stabilize the beating heart can encounter difficulty maintaining mechanical traction against the surface of the heart if they are not sufficiently maneuverable, and devices which utilize suction or vacuum to engage the heart can have a difficult time maintaining a vacuum seal against the heart tissue for the same reason.
Even a device that is extremely maneuverable so as to be able to place the stabilizing portion of the device at many locations on the heart may not have a sufficiently small size of low profile to be an effective device. Since the working space provided by the incision opening is quite limited, it is desirable to make the stabilization device as small and low profile as possible to maintain maximum working space, as well as visibility for the surgeon.
In view of the foregoing, it would be desirable to have methods and devices for stabilizing the beating heart that improve upon the maneuverability of the existing devices while maintaining or decreasing the amount of space that is occupied thereby, to provide the surgeon with more working space, better visibility and to make the overall procedure easier by making the operation of the stabilization device easier and more effective.
SUMMARY OF THE INVENTION
The present invention will be primarily described for use in stabilizing the beating heart during a surgical procedure, but the invention is not limited thereto, and may be used in other surgical procedures. Described herein is a stabilization system including a tissue contact member having a surface adapted to contact the tissue and temporarily maintain the tissue in a relatively immobilized state; and a maneuverable arm attached to the tissue contact member, which includes at least one articulating joint formed by a link having a male articulating surface composed of angled teeth and a female articulating surface having angled trenches adapted to receive the angled teeth. This type of articulating joint moves in one degree of freedom directed by the angled teeth sliding against the angled trenches.
In an example described, the maneuverable arm comprises a plurality of the above-described articulating joints. Further, one or more rotational joints may be provided, each formed by a link having a male articulating surface and a link having a female articulating surface, which are positioned for relative rotation in a plane perpendicular to a longitudinal axis of the maneuverable arm. The rotational joints, together with the articulating joints impart maneuverability in three dimensions to the maneuverable arm.
In an example described, a first rotational joint is provided intermediate the articulating joints and a second rotational joint is positioned at or near a proximal end of the maneuverable arm.
A low profile mount is provided which is connected at a proximal end portion of the maneuverable arm. The mount includes a first mount portion and a second mount portion, which is pivotally connected to the first mount portion. The first mount portion may be integral with a male or female articulating surface of a rotational joint that it then forms a part of at the proximal end of the maneuverable arm. The second mount portion is pivotal away from the first mount portion to position the mount over a fixed object, or to release the mount from the fixed object. The mount portion also allows the stablization system to be slid along a rail on a fixed object to which it is mounted. The second mount portion is pivotable toward the first mount portion to fix the mount on the fixed object.
The mount may further comprise a locking mechanis

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surgical instruments for stabilizing a localized portion of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surgical instruments for stabilizing a localized portion of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical instruments for stabilizing a localized portion of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259186

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.