Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element
Reexamination Certificate
2001-10-05
2003-11-25
Cuneo, Kamand (Department: 2829)
Electricity: measuring and testing
Fault detecting in electric circuits and of electric components
Of individual circuit component or element
C324S719000, C324S765010
Reexamination Certificate
active
06653850
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to measuring the lifetime of minority carriers in semiconductors by microwave or eddy current so that the surface of the semiconductor sample is passivated simultaneously. Passivation is performed by continuously charging the semiconductor surface realised advantageously by corona discharge.
PRIOR ART
The lifetime of minority carriers is a very important parameter for characterising the purity of semiconductor materials and devices. One of the basic methods for determining the lifetime of carriers is the measurement of microwave reflection of the material. However, the objective of the measurement is to determine the bulk properties of the material, thus surface processes should be eliminated from the measurement, i.e. the surface should be passivated. At the same time, permanent changes in the sample should be avoided.
The invention relates to measuring the lifetime of minority carriers in semiconductors by microwave or eddy current so that the surface of the semiconductor sample is passivated simultaneously. Passivation is performed by continuously charging the semiconductor surface realised advantageously by corona discharge.
The lifetime of a minority carrier is an important parameter for characterising the purity of semiconductor materials and devices, since it is very sensitive against even to small quantities of impurities. Faults, dislocations or impurities present even below concentrations of 10
10
/cm
3
can already be detected by measuring the lifetime of minority carriers. These measuring techniques became fundamental tools in developing semiconductor technology and devices.
Several procedures are known for studying the recombination lifetime of minority carriers. One of the methods is based on microwave reflection. The present invention focuses on the elimination of only one of the basic problems of the microwave method, thus we restrict our discussion to describing this method.
First A. P. Ramsa, H. Jacobs and F. A. Brand described a procedure in the J. Appl. Phys., No.30 in 1995 concerning the determination of the recombination life-time of minority carriers from the decay of optically excited excess charge carriers so that the semiconductor was placed into a microwave field, and the time course of microwave reflection was measured.
In the excitation period of the measurement, excess charge carriers, i.e. electron-hole pairs are generated in a semiconductor by light pulses. After the light pulse, the original equilibrium state is restored in the semiconductor, the concentration of excess carriers gradually decreases; electrons and holes recombine with each other. The presence of impurity atoms or crystal faults accelerates the recombination. In the simple case, the time function of the recombination is exponential, with the so-called recombination lifetime as its time constant. The inverse of lifetime is a probability quantity which, in the presence of only one type of faults, is proportional to fault concentration. Microwave reflection methods are suitable for following the course of recombination processes in time. The sample is placed into a microwave field in a suitable arrangement, the frequency of the microwave source (e.g. Gunn oscillator) is typically 10 GHz. Usually a circulator is also coupled to the microwave source for transferring the microwave energy to an antenna. The antenna radiates the microwave onto the sample. In this reflection arrangement, the microwave reflected from the sample reaches a detector via circulator and antenna. The intensity of microwave reflected from the semiconductor sample depends, among other factors, on the conductivity of the semiconductor segment, thus on the momentary carrier concentration in the material.
If the carrier concentration changes in time, this is also reflected in a change of reflected microwave intensity. In case of small excitations, i.e. if excess carriers are present only in small amounts relative to the original equilibrium concentration, the intensity of reflected microwave signals is proportional to the change in conductivity i.e. in carrier concentration. Due to this, the time course of the microwave intensity sensed by the detector accurately reflects the change in minority carrier concentration. Thus the lifetime of minority carriers can be determined on the basis of reflected microwave intensity.
Several commercial devices protected by patent law have been constructed according to the above principle. Examples are the following USA patents: U.S. Pat. No. 4,704,576; U.S. Pat. No. 5,406,214.
However, in the course of the above measurements, a very important problem emerges. Whereas our aim is to measure phenomena taking place in the bulk of the semiconductor material, and through this, to determine the quality of the material, in measurement results processes occurring on the surface of the sample also appear, very often they even can play a dominant role. The reason for this is that on the surface of the semiconductor crystal, in addition to the bonds creating the crystal, so-called “hanging” bonds are also present forming recombination centres and thus accelerating the recombination of carriers. In order to eliminate the interfering surface recombination, the sample is either thermally oxidised or chemically passivated. These methods eliminate the surface recombination centres by doing away with the “hanging” bonds. However, these methods have also their significant drawbacks.
Thermal oxidation takes place at very high temperatures (about at 1000° C.). Parallel to growing the oxide layer, the semiconductor suffers other changes as well. Heat treatment transforms the dislocation or fault structures in the semiconductor, and let impurities present on the surface diffuse into its bulk. As a result, we cannot study the sample in its original state.
Another disadvantage of oxidation is that the oxide-semiconductor transition is, in general, not complete, thus “hanging” bonds are still present. These, acting as recombination centres, may further influence the results of carrier lifetime measurements. This drawback can be eliminated by a further step, by the so-called corona charging of the surface before measurement (Schöftaler). The method takes place by means of a corona generator which ionises the molecules in air and the ions are led to the oxide surface. In the oxide thus charged, a very high field strength partly penetrating into the semiconductor is generated. This electric field separates the carriers generated during measuring the carrier lifetime. This means that depending on polarity, the one type of carriers (e.g. negative electrons) are repulsed from the neighbourhood of the oxide-semiconductor transition, while carriers of opposite charge (e.g. positive holes) are attracted to the transition. Due to this, only one type of carriers is present at the transition. The requirement for recombination is, at the same time, the simultaneous presence of both types of carriers in a given part of the field. Due to corana charging of the oxide surface, no recombination occurs on the surface of the semiconductor (at semiconductor-oxide transitions), not even if some residual recombination centres are present. Corona charging proved to be a very useful procedure in measuring thermally oxidised semiconductors. However, on oxide-free surfaces of semiconductors, due to the much greater conductivity, the ions from air are neutralised, thus no electric field and consequently, no passivation occurs. It is true even if instead of the highly isolating thermal oxide, another oxide-type with looser structure is grown on the semiconductor surface. The very thin, so-called “native” oxide grown spontaneously on the surface of several semiconductors (e.g. silicon) at ambient conditions is neither suitable for permanent charging. The reason for this is that such a layer is capable of keeping the charge only for seconds or minutes, thus the surface of the pretreated sample is neutralised even before starting the measurement.
The other procedure used is the so-called chemi
Cuneo Kamand
Keleman Gabor J.
Kinberg Robert
Nguyen Trung
Semilab Felvezto Fizikai Laboratorium RT
LandOfFree
Surface passivation method and arrangement for measuring the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Surface passivation method and arrangement for measuring the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface passivation method and arrangement for measuring the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3164802