Surface flashover resistant capacitors and method for...

Semiconductor device manufacturing: process – Formation of electrically isolated lateral semiconductive...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S381000, C438S382000, C438S393000, C438S396000, C438S404000, C361S321600

Reexamination Certificate

active

06627509

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to electrical capacitors and more particularly to improved ceramic capacitors able to withstand surface flashover and a method for the manufacture of these devices.
BACKGROUND OF THE INVENTION
Ceramic capacitor technology covers a wide range of product types based on a multitude of dielectric materials and physical configurations. Regardless of the particular composition of a capacitor, all such devices are capable of storing electrical energy and find many applications in the field of electronics including: discharging stored energy, blocking direct current, coupling AC circuit components, bypassing AC signals, discriminating among frequencies, suppressing transient voltages, etc.
Multilayer ceramic capacitors are available in two general configurations. They are sold as bare leadless (chip) components, or encapsulated leaded devices. Traditionally, the chip version has been used in densely packed hybrid and delay line circuits, while the leaded capacitor has dominated the high volume printed circuit board market, which is tooled for the automatic insertion of axial or radial lead components of all types. The need for higher packing densities of components on printed circuit boards led to the development of surface mount technology which involves high speed automatic placement of leadless components. Components destined for surface mount are usually packed in tape and reel format and subsequently fed into placement machines that remove individual components from the tape and tack them to the surface of the printed circuit board with a non-conductive epoxy. Subsequent electrical attachment to conductive sites on the printed circuit board is typically accomplished with traditional solder wave processing. The greatly expanded use of surface mount technology has dramatically increased the importance of the physical size of surface mount components, such as multilayer ceramic chip capacitors. Smaller components yield higher component densities on the printed circuit boards and in turn smaller electronic devices. Thus, reducing the size of surface mount components is of great import.
The body of a multilayer ceramic capacitor is composed of alternating layers of ceramic dielectric material and conductive electrodes. The chip version of the device is completed by the addition of a pair of external conductive end caps or terminals placed at opposite ends of the body of the device. The leaded version of the device begins with the same multilayer ceramic and metal composite body as the chip version of the component but is completed by the addition of a pair of protruding conductive leads attached to opposite ends of the body and a nonconductive layer. The nonconductive layer is applied to the entire external surface of the body and leads with the exception of those portions of the leads which extend beyond the body (see e.g., U.S. Pat. No. 5,888,590).
Surface flashover is a common problem associated with ceramic chip capacitors. It represents a failure of the component and may destroy the component itself or damage electronic equipment of which the component is a part. Surface flashover is characterized by an electrical arc between the metal end caps that travels across the external surface of the outermost layer of ceramic dielectric material. The distance between the metal end caps and the voltage across the capacitor are the dominant factors in determining whether surface flashover will occur. Some other characteristics of the capacitor that may affect the size/voltage level at which surface flashover will occur include: surface contamination, properties inherent to the ceramic dielectric material, and polarization within the ceramic dielectric material. Although insulative coatings could help to alleviate surface flashover, known applications are relatively bulky in comparison to the size of ceramic chip capacitors and may impede the ability of placement machines to handle such parts during high-speed surface mount operations. Additionally, the conductive end caps of multilayer ceramic chip capacitors must be exposed in order for them to be attached by soldering to a printed circuit board. Preventing the coating of these end caps while facilitating the coating of the remainder of the chip capacitor is difficult given the nature of current capacitor coating application processes and the relatively small size of the end caps that must remain free of the coating material.
“Parylene” is a general term used to describe a class of poly-para-xylylenes which are derived from a dimer having the structure:
wherein X is typically hydrogen or a halogen. Common forms of parylene dimers include the following:
Parylene films are formed from their related dimers by means of a well-known vapor deposition process in which the dimer is vaporized, pyrolized and passed into a deposition chamber, wherein the monomer molecules deposit and polymerize onto the contents of the deposition chamber according to the following reaction:
Parylene films (see e.g., U.S. Pat. No. 4,500,562) are well known in the electronic arts and are typically employed due to their ability to conform to items with varied geometries and withstand environmental conditions. For example, they have been used to protect electronic devices, sensors and batteries from adverse environmental conditions (see U.S. Pat. Nos. 6,138,349, 3,676,754 and 5,561,004 respectively). Parylene films have also been employed to insulate wire leads to prevent short-circuits when the leads are physically deformed (see U.S. Pat. No. 5,656,830), to form internal dielectric layers in capacitors embedded in printed circuit boards (U.S. Pat. No. 6,068,782) and as a portion of the internal dielectric layer of discrete capacitors (U.S. Pat. Nos. 3,333,169 and 3,397,085). One useful way to form these films is via vapor deposition (see e.g., U.S. Pat. Nos. 5,534,068, 5,536,319, 5,536,321, 5,536,322).
It is desirable for a ceramic chip capacitor, which will be employed as a safety capacitor, to be as small as possible yet able to withstand high voltage levels. Typically such parts are certified to industry or international standards to ensure reliability. These standards define, among other things, the voltage level that a capacitor of a given physical size must be able to withstand. For example, one such standard defines a ceramic chip capacitor measuring 0.18 inches in length able to withstand 2700 VDC and another defines a ceramic chip capacitor measuring 0.22 inches in length able to withstand 5000 VDC.
SUMMARY OF THE INVENTION
The present invention is directed to a surface flashover resistant multilayer ceramic capacitor. The capacitor has a plurality of layers of dielectric material and a plurality of electrodes disposed between the layers of dielectric material. End caps are located at either end of the capacitor and are connected to one or more of the internal electrodes. A coating comprising one or more insulative layers is applied to the outer surface of the capacitor and selected portions of the coating are subsequently removed. The coating of insulative layer comprises a polymer, and specifically a poly-para-xylylene. Preferably, the insulative coating is applied through a vapor deposition process. The selected portions of the insulating layer are removed preferably by laser ablation.


REFERENCES:
patent: 3333169 (1967-07-01), Valley
patent: 3397085 (1968-08-01), Cariou et al.
patent: 3676754 (1972-07-01), Maserjian et al.
patent: 4500562 (1985-02-01), Jahn et al.
patent: 4700457 (1987-10-01), Matsukawa
patent: 5424097 (1995-06-01), Olson et al.
patent: 5534068 (1996-07-01), Beach et al.
patent: 5536319 (1996-07-01), Wary et al.
patent: 5536321 (1996-07-01), Olsen et al.
patent: 5536322 (1996-07-01), Wary et al.
patent: 5538758 (1996-07-01), Beach et al.
patent: 5556473 (1996-09-01), Olson et al.
patent: 5561004 (1996-10-01), Bates et al.
patent: 5583359 (1996-12-01), Ng et al.
patent: 5641358 (1997-06-01), Stewart
patent: 5656830 (1997-08-01), Zechman
patent: 5709753 (1998-01-01), Olson et al.
pate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface flashover resistant capacitors and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface flashover resistant capacitors and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface flashover resistant capacitors and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3074560

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.