Paper making and fiber liberation – Apparatus – Apparatus repair – cleaning or conditioning
Reexamination Certificate
2000-08-29
2002-03-19
Chin, Peter (Department: 1731)
Paper making and fiber liberation
Apparatus
Apparatus repair, cleaning or conditioning
C162S199000, C162S252000
Reexamination Certificate
active
06358368
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a support beam unit intended for the support of at least one functional unit in a machine for the production and/or the processing of a material web, specifically a paper or cardboard web.
2. Description of the Related Art
During the operation of machinery for the production and/or processing of a fiber material web, specifically a paper or cardboard web, functional units, such as for example metering devices, together with the support beams on which the functional units are mounted are subject to a multitude of different stresses. Mechanical stresses due to the ever present elasticity which exists in the materials used in the construction of the support beams or the functional units, i.e. steel, and thermal stresses caused by thermal expansions lead to deflections of the support beam and the functional unit. Such deflections cause irregularities in the progression of the process, thereby negatively influencing the process result.
A certain improvement with regard to the deflection of the support beam and the functional device may be achieved by appropriately locating or supporting the support beam which is supporting the functional unit. A support beam known from DE 296 00 016 U is supported at two locations, whereby these points of support are located in the longitudinal direction of the support beam, at a certain distance from the two ends of the support beam. To achieve an additional reduction in the support beam deflection, the support beam may be equipped with a compensating device, for example, pressure tubing extending along the interior of the supporting beam, parallel to its longitudinal axis. Based on the placement of the supporting beam as suggested in DE 296 00 016 U, a more favorable deflection line is achieved with regard to mechanical stress of the supporting beam. It is, however, a disadvantage that the suggested placement is unsuitable for supporting beams manufactured from materials having a low thermal expansion factor. Supporting beams manufactured from materials that offer thermal dimensional stability, for example, glass or carbon fiber reinforced synthetics, have hitherto proven to be insufficiently deflection resistant.
SUMMARY OF THE INVENTION
Therefore, the current invention provides a construction method enabling utilization of materials that offer thermal dimensional stability for the manufacture of supporting beams in the aforementioned types of machinery.
According to the current invention, a support beam unit for supporting at least one functional device in a machine for the production and/or processing of a fiber material web, specifically a paper or cardboard web, includes a first partial supporting beam and a second partial supporting beam. The first partial supporting beam supports the functional device and is supported on the second partial supporting beam. The first partial supporting beam surrounds the second supporting beam, at least sectionally.
The method of construction suggested by the current invention allows a division of the stability functionalities between the first and the second partial supporting beam. In one embodiment, the first partial supporting beam is manufactured from a thermally dimensionally stable material, for example, a fiber reinforced synthetic material, preferably fiber glass or carbon fiber reinforced synthetics. Meanwhile, the second partial supporting beam is configured so that, in addition to the thermal dimensional stability provided by the first partial supporting beam, the entire supporting beam unit also has the necessary mechanical rigidity and flexural strength.
The second partial supporting beam may be manufactured from steel, preferably rust-resistant steel and/or from a fiber reinforced synthetic material, preferably a glass fiber or carbon fiber reinforced synthetic material. Particularly when utilizing synthetic materials in the construction of the second partial supporting beam, a weight reduction can be achieved compared to conventional supporting beam construction, while attaining a sufficient flexural strength, due to the lower density of fiber reinforced synthetics.
In order to ensure longevity of the functional device under the conditions that are present in machinery for the production and/or processing of a fiber material web, it is advantageous to manufacture the functional unit from steel, preferably rust-resistant steel.
The generally limited space available in machinery of the aforementioned type can be utilized effectively if the longitudinal axes of the first partial support beam and the second partial support beam, at least in a non-deformed condition, are arranged essentially parallel to each other in an area of mutual extension.
A further improvement in the dimensional stability of the support beam unit is possible by supporting the first partial supporting beam on the second partial supporting beam on at least two supports which are arranged in longitudinal direction of the first partial support beam, preferably always at a predetermined distance from each end face of the first partial supporting beam. By supporting the first partial supporting beam on the second partial supporting beam in this manner, a favorable deflection characteristic of the first partial supporting beam can be achieved.
Particularly, with a uniform load on the support beam unit and the functional device supported on it, across the working width of the material web, as is desirable in machinery for the production and/or processing of material webs, it can be advantageous that the two or more supports are located symmetrically to the longitudinal center of the first partial supporting beam in longitudinal direction of the first supporting beam. By arranging the support locations symmetrically, identical support forces occur at the support locations due to a constant load across the working width of the material web, resulting in a symmetrical and thereby generally uniform load upon the entire supporting beam unit. This, in turn, has a positive effect on the process result. It has been proven to be especially effective if the distance of at least one of the supports from the allocated face end of the first partial supporting beam is between approximately 15% and approximately 30%, preferably approximately 25% of the length of the first partial supporting beam. It is, however, also feasible to arrange the supports asymmetrical relative to the longitudinal center.
In consideration of a load situation that is changeable, locally and/or chronologically, an adjustment of the supporting situation of the first partial supporting beam on the second partial supporting beam may be desirable according to prevailing load situation. For this purpose, the position of one or more of the supports may be adjustable transversely to the material web. A control device that is one or more of mechanically, electrically, and fluidly adjustable may be provided to allow for such an adjustment.
When considering a load dependent deflection line, both the line progression and the maximum deviation of the deformed profile from the desired profile occurring at one point are factors. This maximum deflection can be reduced by supporting the first partial supporting beam with one or more pairs of supports on the second partial supporting beam.
The fundamental principle of this type of support is already known, for example, from DE 196 136 184 A1. This prior publication describes the reduction in the deflection of a beam by use of absorbing forces at two separately configured rigid frames, whereby each of these is supported by a pair of supports at one end of the beam. However, it is not clear exactly at what location on the beam and frame unit the forces originating from a functional unit and the forces originating from the support on a machinery frame will act. It is, however, disadvantageous in every instance that the actual support includes two additional components which are manufactured separately and which must be installed keeping within low error toleranc
Bernert Richard
Fischer Franz
Henninger Christoph
Kustermann Martin
Seliger Martin
Chin Peter
Hug Eric
Taylor & Aust P.C.
Voith Sulzer Papiertechnik Patent
LandOfFree
Support beam unit method of adjustment for a support beam unit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Support beam unit method of adjustment for a support beam unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Support beam unit method of adjustment for a support beam unit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2848573