Active solid-state devices (e.g. – transistors – solid-state diode – Heterojunction device – With lattice constant mismatch
Reexamination Certificate
2006-09-26
2006-09-26
Parker, Kenneth (Department: 2815)
Active solid-state devices (e.g., transistors, solid-state diode
Heterojunction device
With lattice constant mismatch
C257S012000, C257S015000, C257S022000, C257S183100, C257S192000, C257SE29072, C257SE29081
Reexamination Certificate
active
07112830
ABSTRACT:
The invention provides a device having a substrate, a buffer region positioned upon the substrate, wherein the buffer region has an upper buffer region and a lower buffer region, a heterojunction region positioned upon the buffer region, and a superlattice positioned between the lower buffer region and the upper buffer region, wherein the device is configured to function as a heterojunction field effect transistor.
REFERENCES:
patent: 3677836 (1972-07-01), Lorenz
patent: 4205331 (1980-05-01), Esaki et al.
patent: 4300811 (1981-11-01), Ettenberg et al.
patent: 4368098 (1983-01-01), Manasevit
patent: 4404265 (1983-09-01), Manasevit
patent: 4426656 (1984-01-01), DiLorenzo et al.
patent: 4471366 (1984-09-01), Delagebeaudeuf et al.
patent: 4614961 (1986-09-01), Khan et al.
patent: 4616248 (1986-10-01), Khan et al.
patent: 4666250 (1987-05-01), Southwell
patent: 4673959 (1987-06-01), Shiraki et al.
patent: 4999842 (1991-03-01), Huang et al.
patent: 5005057 (1991-04-01), Izumiya et al.
patent: 5012486 (1991-04-01), Luryi et al.
patent: 5052008 (1991-09-01), Kemeny
patent: 5087576 (1992-02-01), Edmond et al.
patent: 5107314 (1992-04-01), Kahng et al.
patent: 5138408 (1992-08-01), Ando
patent: 5146465 (1992-09-01), Khan et al.
patent: 5147817 (1992-09-01), Frazier et al.
patent: 5162243 (1992-11-01), Streit et al.
patent: 5182670 (1993-01-01), Khan et al.
patent: 5192987 (1993-03-01), Khan et al.
patent: 5208820 (1993-05-01), Kurihara et al.
patent: 5284782 (1994-02-01), Jeong et al.
patent: 5296395 (1994-03-01), Khan et al.
patent: 5300186 (1994-04-01), Kitahara et al.
patent: 5408487 (1995-04-01), Uchida et al.
patent: 5435264 (1995-07-01), Santiago et al.
patent: 5449930 (1995-09-01), Zhou
patent: 5484664 (1996-01-01), Kitahara et al.
patent: 5665618 (1997-09-01), Meyer et al.
patent: 5670798 (1997-09-01), Schetzina
patent: 5679965 (1997-10-01), Schetzina
patent: 5690737 (1997-11-01), Santiago et al.
patent: 5751753 (1998-05-01), Uchida
patent: 5804834 (1998-09-01), Shimoyama et al.
patent: 5831277 (1998-11-01), Razeghi
patent: 5901165 (1999-05-01), Uchida
patent: 5903017 (1999-05-01), Itaya et al.
patent: 5929466 (1999-07-01), Ohba et al.
patent: 5932006 (1999-08-01), Santiago et al.
patent: 5933705 (1999-08-01), Geels et al.
patent: 5965909 (1999-10-01), Tanaka
patent: 6048748 (2000-04-01), Khare et al.
patent: 6051866 (2000-04-01), Shaw et al.
patent: 6064082 (2000-05-01), Kawai et al.
patent: 6072203 (2000-06-01), Nozaki et al.
patent: 6147364 (2000-11-01), Itaya et al.
patent: 6150674 (2000-11-01), Yuri et al.
patent: 6177685 (2001-01-01), Teraguchi et al.
patent: 6201264 (2001-03-01), Khare et al.
patent: 6208001 (2001-03-01), Santiago et al.
patent: 6242765 (2001-06-01), Nashimoto
patent: 6306212 (2001-10-01), Santiago et al.
patent: 6316793 (2001-11-01), Sheppard et al.
patent: 6342411 (2002-01-01), Pitts, Jr.
patent: 6462361 (2002-10-01), Udagawa et al.
patent: 6486502 (2002-11-01), Sheppard et al.
patent: 6489628 (2002-12-01), Morizuka
patent: 6521961 (2003-02-01), Costa et al.
patent: 6534791 (2003-03-01), Hayashi et al.
patent: 6583454 (2003-06-01), Sheppard et al.
patent: 6849882 (2005-02-01), Chavarkar et al.
patent: 2003/0178633 (2003-09-01), Flynn et al.
patent: 2004/0119067 (2004-06-01), Weeks et al.
patent: 0 297 654 (1989-01-01), None
patent: 0 549 278 (1993-06-01), None
patent: WO 02/093650 (2002-11-01), None
Fan, Z. et al., “Suppression of leakage currents and their effect on the electrical performance of AlGaN/GaN modulation doped field-effect transistors,”Appl. Phys. Lett., vol. 69, No. 9, pp. 1229-1231 (Aug. 26, 1996).
Kusakabe, K. et al., “Reduction of threading dislocations in migration enhanced epitaxy grown GaN with N-polarity by use of AIN multiple interlayer,”Journal of Crystal Growth, vol. 230, pp. 387-391 (2001).
Heying, B. et al., “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,”Appl. Phys. Lett., vol. 68, No. 5, pp. 643-645 (Jan. 29, 1996).
Hirayama, H. et al., “Fabrication of a low-threading-dislocation-density A1xGa1-xN buffer on SiC using highly Si-doped A1xGa1-xN superlattices,”Appl. Phys. Lett., vol. 80, No. 12, pp. 2057-2059 (Mar. 25, 2002).
Nitta, S, et al., “Mass transport and the reduction of threading dislocation in GaN,”Applied Surface Science, vol. 159-160, pp. 421-426 (2000).
Sverdlov, B. et al., “Formation of threading defects in GaN wurtzite films grown on nonisomorphic substrates,”Appl. Phys. Lett., vol. 67, No. 14, pp. 2063-2065 (Oct. 2, 1995).
Wang, H. et al., “A1N/A1GaN superlattices as dislocation filter for low-threading-dislocation thick A1GaN layers on sapphire,”Appl. Phys. Lett., vol. 81, No. 4, pp. 604-606 (Jul. 22, 2002).
Weimann, N. et al., “Scattering of electrons at threading dislocations in GaN,”J. Appl. Phys., vol. 83, No. 7, pp. 3656-3659 (Apr. 1, 1998).
Zhang, Y. et al., “Charge control and mobility studies for an A1GaN/GaN high electron mobility transistor,”J. Appl. Phys., vol. 85, No. 1, pp. 587-594 (Jan. 1, 1999).
Zhang, X. et al., “Enhanced optical emission from GaN films grown on a silicon substrate,”Appl. Phys. Lett., vol. 74, No. 14, pp. 1984-1986 (Apr. 5, 1999).
Amano, H. et al., “Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate,”Thin Solid Films, vol. 163, pp. 415-420 (1988).
Amano, H. et al., “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),”Japanese Journal of Applied Physics, vol. 28, No. 12, pp. L2112-L2114 (Dec. 1989).
Amano, H. et al., “Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an A1N Buffer Layer,”Japanese Journal of Applied Physics, vol. 29, No. 2, pp. L205-L206 (Feb. 1990).
Compound Semiconductor, p. 38 (Sep. 2002).
Corcoran, E., “Trends in Materials Diminishing Dimensions,”Scientific American, pp. 123-131 (Nov. 1990).
CRC Press, “The Electrical Engineering Handbook,” Second Edition, Dorf, p. 994 (1997).
Eastman, L. et al., “GaN Materials for High Power Microwave Amplifiers,”Mat. Res. Soc. Symp. Proc., vol. 512, pp. 3-7 (1998).
Eastman, L. et al., “Undoped A1GaN/GaN HEMTs for Microwave Power Amplification,”IEEE Transactions on Electron Devices, vol. 48, No. 3, pp. 479-485 (Mar. 2001).
Gaska, R. et al., “High-Temperature Performance of A1GaN/GaN HFETs on SiC Substrates,”IEEE Electron Device Letters, vol. 18, No. 10, pp. 492-494 (Oct. 1997).
Gaska, R. et al., “Electron transport in A1GaN-GaN heterostructures grown on 6H-SiC substrates,”Applied Physics Letters, vol. 72, No. 6, pp. 707-709 (Feb. 9, 1998).
Gelmont, B. et al, “Monte Carlo simulation of electron transport in gallium nitride,”J. Appl. Phys., vol. 74, No. 3, pp. 1818-1821 (Aug. 1, 1993).
Hsu, L. et al., “Effect of polarization fields on transport properties in A1GaN/GaN heterostructures,”Journal of Applied Physics, vol. 89 No. 3, pp. 1783-1789 (Feb. 1, 2001).
Khan, M. et al., “Electrical properties and ion implantation of epitaxial GaN, grown by low pressure metalorganic chemical vapor deposition,”Appl. Phys. Lett., vol. 42, No. 5, pp. 430-432 (Mar. 1, 1983).
Khan, M. et al., “Properties and ion implantation of A1xGa1-xN epitaxial single crystal films prepared by low pressure metalorganic chemical vapor deposition,”Appl. Phys. Lett., vol. 43, No. 5, pp. 492-494 (Sep. 1, 1983).
Khan, M. et al. “Photoluminescence characteristics of A1GaN-GaN-A1GaN quantum wells,”Appl. Phys. Lett., vol. 56, No. 13, pp. 1257-1259 (Mar. 26, 1990).
Khan, M. et al., “Growth of high optical and electrical quality GaN layers using low-pressure metalorganic chemical vapor deposition,”Appl. Phys. Lett., vol. 58, No. 5, pp. 526-527 (Feb. 4, 1991).
Khan, M. et al., “Vertical-cavity, room-temperature stimulated emissio
APA Enterprises, Inc.
Kagan Binder PLLC
Parker Kenneth
Warren Matthew E.
LandOfFree
Super lattice modification of overlying transistor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Super lattice modification of overlying transistor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Super lattice modification of overlying transistor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3616417