Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2001-07-19
2004-02-24
Chang, Ceila (Department: 1625)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S252120, C514S252180, C514S309000, C514S312000, C514S331000, C514S469000, C514S575000, C544S360000, C544S383000, C546S141000, C546S153000, C546S233000, C546S234000, C546S331000
Reexamination Certificate
active
06696449
ABSTRACT:
FIELD OF THE INVENTION
This invention is directed generally to proteinase (also known as “protease”) inhibitors, and, more particularly, to sulfonyl aryl hydroxamates (also known as “sulfonyl aryl hydroxamic acids”) that, inter alia, inhibit matrix metalloproteinase (also known as “matrix metalloprotease” or “MMP”) and/or aggrecanase activity. This invention also is directed to compositions of such inhibitors, intermediates for the syntheses of such inhibitors, methods for making such inhibitors, and methods for preventing or treating conditions associated with MMP activity, particularly pathological conditions.
BACKGROUND OF THE INVENTION
Connective tissue is a required component of all mammals. It provides rigidity, differentiation, attachments, and, in some cases, elasticity. Connective tissue components include, for example, collagen, elastin, proteoglycans, fibronectin, and laminin. These biochemicals make up (or are components of) structures, such as skin, bone, teeth, tendon, cartilage, basement membrane, blood vessels, cornea, and vitreous humor.
Under normal conditions, connective tissue turnover and/or repair processes are in equilibrium with connective tissue production. Degradation of connective tissue is carried out by the action of proteinases released from resident tissue cells and/or invading inflammatory or tumor cells.
Matrix metalloproteinases, a family of zinc-dependent proteinases, make up a major class of enzymes involved in degrading connective tissue. Matrix metalloproteinases are divided into classes, with some members having several different names in common use. Examples are: MMP-1 (also known as collagenase 1, fibroblast collagenase, or EC 3.4.24.3); MMP-2 (also known as gelatinase A, 72 kDa gelatinase, basement membrane collagenase, or EC 3.4.24.24), MMP-3 (also known as stromelysin 1 or EC 3.4.24.17), proteoglycanase, MMP-7 (also known as matrilysin), MMP-8 (also known as collagenase II, neutrophil collagenase, or EC 3.4.24.34), MMP-9 (also known as gelatinase B, 92 kDa gelatinase, or EC 3.4.24.35), MMP-10 (also known as stromelysin 2 or EC 3.4.24.22), MMP-1 I (also known as stromelysin 3), MMP-12 (also known as metalloelastase, human macrophage elastase or HME), MMP-13 (also known as collagenase 111), and MMP-14 (also known as MT1-MMP or membrane MMP). See, generally, Woessner, J. F., “The Matrix Metalloprotease Family” in
Matrix Metalloproteinases,
pp. 1-14 (Edited by Parks, W. C. & Mecham, R. P., Academic Press, San Diego, Calif. 1998).
Excessive breakdown of connective tissue by MMPs is a feature of many pathological conditions. Inhibition of MMPs therefore provides a control mechanism for tissue decomposition to prevent and/or treat these pathological conditions. Such pathological conditions generally include, for example, tissue destruction, fibrotic diseases, pathological matrix weakening, defective injury repair, cardiovascular diseases, pulmonary diseases, kidney diseases, liver diseases, bone diseases, and diseases of the central nervous system. Specific examples of such conditions include, for example, rheumatoid arthritis, osteoarthritis, septic arthritis, multiple sclerosis, a decubitis ulcer, corneal ulceration, epidermal ulceration, gastric ulceration, tumor metastasis, tumor invasion, tumor angiogenesis, periodontal disease, liver cirrhosis, fibrotic lung disease, emphysema, otosclerosis, atherosclerosis, proteinuria, coronary thrombosis, dilated cardiomyopathy, congestive heart failure, aortic aneurysm, epidermolysis bullosa, bone disease, Alzheimer's disease, and defective injury repair (e.g., weak repairs, adhesions such as post-surgical adhesions, and scarring).
Matrix metalloproteinases also are involved in the biosynthesis of tumor necrosis factors (TNFs). Tumor necrosis factors are implicated in many pathological conditions. TNF-&agr;, for example, is a cytokine that is presently thought to be produced initially as a 28 kD cell-associated molecule. It is released as an active, 17 kD form that can mediate a large number of deleterious effects in vitro and in vivo. TNF-&agr; can cause and/or contribute to the effects of inflammation (e.g., rheumatoid arthritis), autoimmune disease, graft rejection, multiple sclerosis, fibrotic diseases, cancer, infectious diseases (e.g., malaria, mycobacterial infection, meningitis, etc.), fever, psoriasis, cardiovascular diseases (e.g., post-ischemic reperfusion injury and congestive heart failure), pulmonary diseases, hemorrhage, coagulation, hyperoxic alveolar injury, radiation damage, and acute phase responses like those seen with infections and sepsis and during shock (e.g., septic shock and hemodynamic shock). Chronic release of active TNF-&agr; can cause cachexia and anorexia. TNF-&agr; also can be lethal.
Inhibiting TNF (and related compounds) production and action is an important clinical disease treatment. Matrix metalloproteinase inhibition is one mechanism that can be used. MMP inhibitors (e.g., inhibitors of collagenase, stromelysin, and gelatinase), for example, have been reported to inhibit TNF-&agr; release. See, e.g., Gearing et al.
Nature,
376, 555-557 (1994). See also, McGeehan et al. See also,
Nature
376, 558-561 (1994). MMP inhibitors also have been reported to inhibit TNF-&agr; convertase, a metalloproteinase involved in forming active TNF-&agr;. See, e.g., WIPO Int'l Pub. No. WO 94/24140. See also, WIPO Int'l Pub. No. WO 94/02466. See also, WIPO Int'l Pub. No. WO 97/20824.
Matrix metalloproteinases also are involved in other biochemical processes in mammals. These include control of ovulation, post-partum uterine involution, possibly implantation, cleavage of APP (&bgr;-amyloid precursor protein) to the ainyloid plaque, and inactivation of (&agr;
I
-protease inhibitor ((&agr;
I
-PI). Inhibiting MMPs therefore may be, for example, a mechanism to control of fertility. In addition, increasing and maintaining the levels of an endogenous or administered serine protease inhibitor (e.g., &agr;
I
-PI) supports the treatment and prevention of pathological conditions such as emphysema, pulmonary diseases, inflammatory diseases, and diseases of aging (e.g., loss of skin or organ stretch and resiliency).
Numerous metalloproteinase inhibitors are known. See, generally, Brown, P. D., “Synthetic Inhibitors of Matrix Metalloproteinases,” in
Matrix Metalloproteinases,
pp. 243-61 (Edited by Parks, W. C. & Mecham, R. P., Academic Press, San Diego, Calif. 1998).
Metalloproteinase inhibitors include, for example, natural biochemicals, such as tissue inhibitor of metalloproteinase (TIMP), (&agr;
2
-macroglobulin, and their analogs and derivatives. These are high-molecular-weight protein molecules that form inactive complexes with metalloproteinases.
A number of smaller peptide-like compounds also have been reported to inhibit metalloproteinases. Mercaptoamide peptidyl derivatives, for example, have been reported to inhibit angiotensin converting enzyme (also known as ACE) in vitro and in vivo. ACE aids in the production of angiotensin II, a potent pressor substance in mammals. Inhibiting ACE leads to lowering of blood pressure.
A wide variety of thiol compounds also have been reported to inhibit MMPs. See, e.g., W095/12389. See also, W096/11209. See also, U.S. Pat. No. 4,595,700. See also, U.S. Pat. No. 6,013,649.
A wide variety of hydroxamate compounds also have been reported to inhibit MMPs. Such compounds reportedly include hydroxamates having a carbon backbone. See, e.g., WIPO Int'l Pub. No. WO 95/29892. See also, WIPO Int'l Pub. No. WO 97/24117. See also, WIPO Int'l Pub. No. WO 97/49679. See also, European Patent No. EP 0 780 386. Such compounds also reportedly include hydroxamates having peptidyl backbones or peptidomimetic backbones. See, e.g, WIPO Int'l Pub. No. WO 90/05719. See also, WIPO Int'l Pub. No. WO 93/20047. See also, WIPO Int'l Pub. No. WO 95/09841. See also, WIPO Int'l Pub. No. WO 96/06074. See also, Schwartz et al., Progr.
Med. Chem.,
29:271-334(1992). See also, Rasmussen et al.,
PharmacoL Ther.,
75(1): 69
Barta Thomas E.
Becker Daniel P.
Bedell Louis J.
DeCrescenzo Gary A.
Freskos John N
Chang Ceila
Chappell Julie M.
Gryte David
Pharmacia Corporation
LandOfFree
Sulfonyl aryl hydroxamates and their use as matrix... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sulfonyl aryl hydroxamates and their use as matrix..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sulfonyl aryl hydroxamates and their use as matrix... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3352404