Cleaning and liquid contact with solids – Apparatus – With non-impelling fluid deflector or baffle other than...
Reexamination Certificate
1999-04-23
2002-03-05
Stinson, Frankie L. (Department: 1746)
Cleaning and liquid contact with solids
Apparatus
With non-impelling fluid deflector or baffle other than...
C134S186000, C134S902000
Reexamination Certificate
active
06352084
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention concerns a device for the treatment of substrates comprising a container filled with a treatment fluid, wherein the treatment fluid streams in from below through the container bottom.
Devices of the aforementioned kind have been known, for instance, from DE 44 13 077 A1 and DE 195 46 990 A1 of the applicant of this present patent application and are also described in the German patent applications DE 195 37 879.2, DE 196 16 402.8, DE 196 15 969.5 or DE 196 37 875.3 of the same applicant, which have not been published as of the filing date of this application. Devices of the aforementioned kind have been successfully used in practice. However, they require a relatively high volume of costly, environmentally harmful and difficult-to-recycle treatment fluid. Furthermore, the requirement exists to provide flow conditions of the treatment fluid in the treatment container as steady as possible in order to treat the substrates to be processed, in particular during rinsing, homogeneously and uniformly across the entire substrate areas.
From the documents JP 3-266 431 A2 and JP 5-136 116 A2 devices of the aforementioned kind are known in which the container bottom is circular arc-shaped and matches the shape of circular discs. The device known from JP 7 249 604 A2 has a container bottom matching the shape of a cassette, wherein the cassette during fluid treatment is arranged in the cassette. The fluid in this known device is not introduced from below through the container bottom. The container bottom only has outlet openings through which the fluid content in the container is drained. From U.S. Pat. No. 5 071 488 and JP 6-252 120 A2 devices with a fluid inlet from below are known in which the wafers during treatment are arranged in a cassette and the fluid flows out via an outlet at the upper end of the fluid container. From JP 4-267 981 A2a device of the aforementioned kind is known which comprises a venting tube that is in communication with an inlet area below the actual fluid container and serves to remove air bubbles that may be present within the supplied hot clean water.
From U.S. Pat. No. 5 014 727, JP 7-106 295 A2 and JP 5-259 143 A2 devices of the aforementioned kind are known in which the fluid to be introduced is distributed below the container bottom into different distribution channels or tubes. JP 6-195 466 A2 shows a cleaning tank in which the cleaning liquid is introduced into the cleaning tank from below through slots arranged in the direction of the wafer edges. In the substrate treatment device known from JP 5-232 978 A2 the container bottom is comprised of a plurality of stacked plates having openings embodied such that the treatment fluid introduced from below is distributed to a plurality of outlet openings.
Based on this, the object of the invention is the development of a device of the aforementioned kind that provides an optimized treatment uniformly across the entire substrate areas with a minimum of design and manufacturing expenditures and with the minimum volume of treatment fluid possible.
SUMMARY OF THE INVENTION
The object of the invention is solved by providing at least two inlet tubes for the treatment fluid under the container bottom, wherein each is comprised of projecting comb-like meshing distribution channels. Such a fluid distribution system under the container bottom allows a steady inlet flow of the fluid and, thus, a homogeneous treatment of the substrates through the fluid regardless of the substrate area, i.e., regardless of the positioning of the substrate areas in the vicinity of the container walls or not. The comb-like distribution channels of at least one inlet tube are advantageously projecting perpendicularly therefrom and are advantageously positioned at the same level, wherein it is especially advantageous to position one distribution channel of an inlet tube respectively between two distribution channels of the other inlet tube. In this manner, the distribution channels of one level are alternatingly supplied with treatment fluid from different sides via the inlet tubes, resulting in a balanced discharged fluid volume and pressure across the entire area, providing a generally steady fluid introduction into the fluid container across the entire container area.
According to an advantageous embodiment of the invention, not only the distribution tubes are provided with outlet openings, but also the inlet tubes from which the distribution channels are projecting, thus providing a diffusor system with steady outlet flow conditions for the treatment fluid across the entire bottom area of the container. The inlet and/or distribution tubes may, in addition to a round embodiment, be of a rectangular, flat or square shape also. The size, shape and number of the openings in the inlet and distribution channels as well as their spacing to each other may be selected according to the respective conditions and, in particular, in regard of providing an inlet flow with generally the same fluid volume and the same fluid pressure per surface unit across the entire diffusor area.
According to an advantageous embodiment of the invention, the cross section surfaces of the inlet tubes and/or distribution channels are decreasing from the inlet location towards the end of the tubes, particularly advantageously as a conical embodiment, thus helping to achieve homogeneous pressure conditions and outlet flow volumes of the treatment fluid across the entire diffusor area.
In addition or independently from the inlet flow systems or the shape of the container bottom mentioned above, the object of the invention is also inventively solved by providing inlet flow slots extending parallel to each other under the container bottom in the inlet flow area of the treatment fluid. These inlet flow slots advantageously extend in the same direction as the edges of the substrates to be treated and serve as compensators for the inlet flow of the treatment fluid. These inlet flow slots are advantageously positioned between an inlet flow system, for example, a diffusor system with comb-like arranged distribution channels described previously, positioned underneath the container bottom. An additional effect is that in the case of a round embodiment of the container bottom, these inlet flow slots compensate and/or bridge the spacing between the inlet openings and the diffusor system positioned in one level. Based on these inlet flow slots, steady, optimized flow conditions within the fluid container can be achieved also in regard to the orientation of the wafer axis. It is especially advantageous, when the spacing of the inlet flow slots corresponds to the spacing of substrates in the container. In this manner, the treatment fluid is flowing controlled and directed between the substrates positioned parallel and with a certain spacing to each other, thus providing a more homogeneous optimized application of treatment fluid to the substrate surfaces.
To improve the fluid separation edges and the outlet flow conditions of the fluid at the outlet openings of the slots in general, it is advantageously suggested to embody these openings in the outlet area like a jet.
Advantageously, the inlet flow slots or other inlet openings, for example additional jets, in the area of a substrate carrier are embodied and arranged such that the treatment fluid in the container area is diverted around and above the substrate carrier. This is also possible with accordingly embodied guiding elements. This embodiment prevents dead flow angles that may occur around the substrate carrier. To avoid repetition concerning this embodiment, DE196 44 253 of the same applicant with the same application date is incorporated by reference into the present patent application.
Additionally or alternatively to the features mentioned above, the object of the invention is inventively solved by providing integrally embodied inlet openings for the treatment fluid in the container bottom. The container bottom is hereby advantageously embodied integrally such that the inlet openings
Becker R. W.
R.W. Becker & Associates
Steag MicroTech GmbH
Stinson Frankie L.
LandOfFree
Substrate treatment device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Substrate treatment device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate treatment device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2836305