Substrate preparation process

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C536S022100, C536S023100, C536S026600

Reexamination Certificate

active

06706875

ABSTRACT:

BACKGROUND OF THE INVENTION
Methods for synthesizing a variety of different types of polymers are well known in the art. For example, the “Merrifield” method, described in Atherton et al., “Solid Phase Peptide Synthesis,” IRL Press, 1989, which is incorporated herein by reference for all purposes, has been used to synthesize peptides on a solid support. In the Merrifield method, an amino acid is covalently bonded to a support made of an insoluble polymer or other material. Another amino acid with an alpha protecting group is reacted with the covalently bonded amino acid to form a dipeptide. After washing, the protecting group is removed and a third amino acid with an alpha protecting group is added to the dipeptide. This process is continued until a peptide of a desired length and sequence is obtained.
Methods have also been developed for producing large arrays of polymer sequences on solid substrates. These large “arrays” of polymer sequences have wide ranging applications and are of substantial importance to the pharmaceutical, biotechnology and medical industries. For example, the arrays may be used in screening large numbers of molecules for biological activity, i.e., receptor binding capability. Alternatively, arrays of oligonucleotide probes can be used to identify mutations in known sequences, as well as in methods for de novo sequencing of target nucleic acids.
Of particular note, is the pioneering work described in U.S. Pat. No. 5,143,854 (Pirrung et al.) and PCT Application No. 92/10092 disclose improved methods of molecular synthesis using light directed techniques. According to these methods, light is directed to selected regions of a substrate to remove protecting groups from the selected regions of the substrate. Thereafter, selected molecules are coupled to the substrate, followed by additional irradiation and coupling steps. By activating selected regions of the substrate and coupling selected monomers in precise order, one can synthesize an array of molecules having any number of different sequences, where each different sequence is in a distinct, known location on the surface of the substrate.
These arrays clearly embody the next step in solid phase synthesis of polymeric molecules generally, and polypeptides and oligonucleotides, specifically. Accordingly, it would be desirable to provide methods for preparation of these arrays, which methods have high throughput, high product quality, enhanced miniaturization and lower costs. The present invention meets these and other needs.
SUMMARY OF THE INVENTION
The present invention generally provides novel processes for the efficient, large scale preparation of arrays of polymer sequences wherein each array includes a plurality of different, positionally distinct polymer sequences having known monomer sequences. In one embodiment, the methods of the present invention provide for the cleaning and stripping of substrate wafers to remove oil and dirt from the surface, followed by the derivatization of the wafers to provide photoprotected functional groups on the surface. Polymer sequences are then synthesized on the surface of the substrate wafers by selectively exposing a plurality of selected regions on the surface to an activation radiation to remove the photolabile protecting groups from the functional groups and contacting the surface with a monomer containing solution to couple monomers to the surface in the selected regions. The exposure and contacting steps are repeated until a plurality of polymer arrays are formed on the surface of the substrate wafer. Each polymer array includes a plurality of different polymer sequences coupled to the surface of the substrate wafer in a different known location. The wafers are then separated into a plurality of individual substrate segments, each segment having at least one polymer array formed thereon, and packaged in a cartridge whereby the surface of said substrate segment having the polymer array formed thereon is in fluid contact with the cavity.
In another embodiment, the present invention provides methods of forming polymer arrays by providing a substrate having a first surface coated with functional groups protected with a photolabile protecting group, and a second surface having a layer that includes one or more of an index matching compound, a light absorbing compound and an antireflective compound. The method then provides for the sequential activation and coupling of monomers in different selected regions of the first surface of the substrate to form a plurality of different polymer sequences in different known locations on the surface of the substrate, by directing an activation radiation at the first surface of the substrate.
In yet another embodiment, the present invention provides a method of forming a plurality of polymer arrays using a batch process. In particular, this method comprises the steps of activating a plurality of substrate wafers by exposing selected regions on each of a plurality of substrate wafers then contacting them with a monomer containing solution in a batch.
In a further embodiment, the present invention provides a method of synthesizing polymers on substrates by first derivatizing the substrate with an aminoalkyltrialkoxysilane.
In an additional embodiment, the present invention provides a method for forming an array of polymers on a substrate using light-directed synthesis wherein the exposing step comprises directing an activation radiation at selected regions on the surface of said substrate by shining the activation radiation through a photolithographic mask having transparent regions and opaque regions where the transparent regions are smaller than the selected regions. As a result, the activation radiation shone through the transparent regions in the mask is diffracted to expose the selected regions.
The present invention also provides methods of forming arrays of polymer sequences having enhanced synthesis efficiencies through the incorporation of monomers which have lipophilic chemical groups coupled thereto.
The present invention also provides methods of forming polymer arrays using the above-described methods, but wherein the deprotection and coupling steps in adjacent selected regions of the substrate surface are aligned to minimize differences in synthesis steps between adjacent regions.
In still another embodiment, the present invention provides polymer arrays and methods of forming them on a tubular substrate by the sequential activation of and coupling of monomers to selected segments of the tubular substrate surface.
In an additional embodiment, the present invention provides methods of photoprotecting functional groups that are coupled to solid supports by exposing the functional group to a photoprotecting group transfer agent having the formula:
wherein R
1
is a photolabile protecting group and X is a leaving group.


REFERENCES:
patent: 4016855 (1977-04-01), Mimata
patent: 4401796 (1983-08-01), Itakura
patent: 4458066 (1984-07-01), Caruthers et al.
patent: 4500707 (1985-02-01), Caruthers et al.
patent: 4507433 (1985-03-01), Miller et al.
patent: 5143854 (1992-09-01), Pirrung et al.
patent: 5202231 (1993-04-01), Drmanac et al.
patent: 5242974 (1993-09-01), Holmes
patent: 5384261 (1995-01-01), Winkler et al.
patent: 5424186 (1995-06-01), Fodor et al.
patent: 5445934 (1995-08-01), Fodor et al.
patent: 5489678 (1996-02-01), Fodor et al.
patent: 5492806 (1996-02-01), Drmanac et al.
patent: 5510270 (1996-04-01), Fodor et al.
patent: 5525464 (1996-06-01), Drmanac et al.
patent: 5527681 (1996-06-01), Holmes
patent: 5545531 (1996-08-01), Rava et al.
patent: 5556752 (1996-09-01), Lockhart et al.
patent: 5624711 (1997-04-01), Sundberg et al.
patent: 5631734 (1997-05-01), Stern et al.
patent: 5639603 (1997-06-01), Dower et al.
patent: 5667972 (1997-09-01), Drmanac et al.
patent: 5695940 (1997-12-01), Drmanac et al.
patent: 5700637 (1997-12-01), Southern
patent: 5723289 (1998-03-01), Eaton et al.
patent: 5764518 (1998-06-01), Collins
patent: 5837832 (1998-11-01), Chee et al.
patent: 5945334 (1999-08-01), Besemer et al.
patent:

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Substrate preparation process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Substrate preparation process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate preparation process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3258783

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.