Compositions – Electrically conductive or emissive compositions – Metal compound containing
Reexamination Certificate
2001-03-28
2003-12-30
Gupta, Yogendra N. (Department: 1751)
Compositions
Electrically conductive or emissive compositions
Metal compound containing
C250S503100, C427S253000, C260S66500B
Reexamination Certificate
active
06669870
ABSTRACT:
BACKGROUND AND SUMMARY OF THE INVENTION
This invention claims the benefit of a provisional application Ser. No. 60/107892, filed Nov. 10, 1998, entitled “Improved Copper Precursor and Synthesis Method”, having the same inventors as the present application.
This invention relates generally to integrated circuit processes and fabrication, and more particularly, to a precursor and synthesis method, having a substituted phenylethylene ligand, such as &agr;-methylstyrene, which improves liquid phase stability, and which is capable of depositing copper at high deposition rates, low resistivity, and with good adhesion on selected integrated circuit surfaces.
The demand for progressively smaller, less expensive, and more powerful electronic products, in turn, fuels the need for smaller geometry integrated circuits (ICs) on larger substrates. It also creates a demand for a denser packaging of circuits onto IC substrates. The desire for smaller geometry IC circuits requires that the interconnections between components and dielectric layers be as small as possible. Therefore, research continues into reducing the width of via interconnects and connecting lines. The conductivity of the interconnects is reduced as the area of the interconnecting surfaces is reduced, and the resulting increase in interconnect resistivity has become an obstacle in IC design. Conductors having high resistivity create conduction paths with high impedance and large propagation delays. These problems result in unreliable signal timing, unreliable voltage levels, and lengthy signal delays between components in the IC. Propagation discontinuities also result from intersecting conduction surfaces that are poorly connected, or from the joining of conductors having highly different impedance characteristics.
There is a need for interconnects and vias to have both low resistivity, and the ability to withstand process environments of volatile ingredients. Aluminum and tungsten metals are often used in the production of integrated circuits for making interconnections or vias between electrically active areas. These metals are popular because they are easy to use in a production environment, unlike copper which requires special handling.
Copper (Cu) would appear to be a natural choice to replace aluminum in the effort to reduce the size of lines and vias in an electrical circuit. The conductivity of copper is approximately twice that of aluminum and over three times that of tungsten. As a result, the same current can be carried through a copper line having nearly half the width of an aluminum line.
The electromigration characteristics of copper are also much superior to those of aluminum. Aluminum is approximately ten times more susceptible than copper to degradation and breakage due to electromigration. As a result, a copper line, even one having a much smaller cross-section than an aluminum line, is better able to maintain electrical integrity.
There have been problems associated with the use of copper, however, in IC processing. Copper pollutes many of the materials used in IC processes and, therefore barriers are typically erected to prevent copper from migrating. Elements of copper migrating into these semiconductor regions can dramatically alter the conduction characteristics of associated transistors. Another problem with the use of copper is the relatively high temperature needed to deposit it on, or removing it from, an IC surface. These high temperatures can damage associated IC structures and photoresist masks.
It is also a problem to deposit copper onto a substrate, or in a via hole, using the conventional processes for the deposition of aluminum when the geometries of the selected IC features are small. That is, new deposition processes have been developed for use with copper, instead of aluminum, in the lines and interconnects of an IC interlevel dielectric. It is impractical to sputter metal, either aluminum or copper, to fill small diameter vias, since the gap filling capability is poor. To deposit copper, first, a physical vapor deposition (PVD), and then, a chemical vapor deposition (CVD) technique, have been developed by the industry.
With the PVD technique, an IC surface is exposed to a copper vapor, and copper is caused to condense on the surfaces. The technique is not selective with regard to surfaces. When copper is to be deposited on a metallic surface, adjoining non-conductive surfaces must either be masked or etched clean in a subsequent process step. As mentioned earlier, photoresist masks and some other adjoining IC structures are potentially damaged at the high temperatures at which copper is processed. The CVD technique is an improvement over PVD because it is more selective as to which surfaces copper is deposited on. The CVD technique is selective because it is designed to rely on a chemical reaction between the metallic surface and the copper vapor to cause the deposition of copper on the metallic surface.
In a typical CVD process, copper is combined with a ligand, or organic compound, to help insure that the copper compound becomes volatile, and eventually decomposes, at consistent temperatures. That is, copper becomes an element in a compound that is vaporized into a gas, and later deposited as a solid when the gas decomposes. Selected surfaces of an integrated circuit, such as diffusion barrier material, are exposed to the copper gas, or precursor, in an elevated temperature environment. When the copper gas compound decomposes, copper is left behind on the selected surface. Several copper gas compounds are available for use with the CVD process. It is generally accepted that the configuration of the copper gas compound, at least partially, affects the ability of the copper to be deposited on to the selected surface.
Copper metal thin films have been prepared via chemical vapor deposition by using many different kinds of copper precursors. In 1990, D. B. Beach et al.
Chem. Mater.
(2) 216 (1990) obtained pure copper films via CVD by using (&eegr;
5
-C
5
H
5
)Cu(PMe
3
), and later, in 1992, H. K. Shin et al.,
Chem. Mater.
(4) 788 (1992) declared the same results by using (hfac)Cu(PR
3
)
n
(R=methyl and ethyl and &eegr;=1 and 2). However, these copper precursors are solids, which can not be used in the liquid delivery system for copper thin film CVD processing. Furthermore, the copper films often contain contamination of carbon and phosphorus, which can not be used as interconnectors in microprocessors.
Cu
2+
(hfac)
2
, or copper (II) hexafluoroacetylacetonate, precursors have previously been used to apply CVD copper to IC substrates and surfaces. However, these Cu
2+
precursors are notable for leaving contaminates in the deposited copper, and for the relatively high temperatures that must be used to decompose the precursor into copper.
The studies of copper precursors conducted in the early of 1990's were concentrated on the evaluation of a series of copper(I) fluorinated &bgr;-diketonate complexes, which have been proven to be very promising sources for the use in the chemical vapor deposition of copper metal thin films. Copper(I) fluorinated &bgr;-diketonate complexes were first synthesized by Gerald Doyle, U.S. Pat. Nos. 4,385,005 (1983) and 4,425,281 (1984), in which he presented the synthesis method and their application in the separation of unsaturated organic hydrocarbons. In the U.S. Pat. No. 5,096,737 (1992), Thomas H. Baum, et at., claimed the application of these copper(I) fluorinated &bgr;-diketonate complexes as copper precursors for CVD copper thin film preparation. Copper thin films have been prepared via chemical vapor deposition using these precursors.
Among several liquid copper precursors, 1,5-dimethyl 1,5-cyclooctadiene copper(I) hexafluoroacetylacetonate mixed with 1,6-dimethyl 1,5-cyclooctadiene copper(I) hexafluoroacetylacetonate ((DMCOD)Cu(hfac)) and hexyne copper(I) hexafluoroacetylacetonate ((HYN)Cu(hfac) were evaluated in detail. The copper thin films deposited using (DMCOD)Cu(hfac) have very good adhesion to metal or metal nit
Charneski Lawrence J.
Evans David R.
Hsu Sheng Teng
Nguyen Tue
Zhuang Wei-Wei
Gupta Yogendra N.
Hamlin Derrick G.
Krieger Scott C.
Rabdau Matthew D.
Ripma David C.
LandOfFree
Substituted phenylethylene precursor synthesis method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Substituted phenylethylene precursor synthesis method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substituted phenylethylene precursor synthesis method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3130589