Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2001-06-14
2003-11-18
McKane, Joseph K. (Department: 1626)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C546S277400, C546S279100
Reexamination Certificate
active
06649634
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to glycogen phosphorylase inhibitors, pharmaceutical compositions containing such inhibitors and the use of such inhibitors to treat diabetes, hyperglycemia, hypercholesterolemia, hypertension, hyperinsulinemias, hyperlipidemia, atherosclerosis and myocardial ischemia in mammals.
In spite of the early discovery of insulin and its subsequent widespread use in the treatment of diabetes, and the later discovery of and use of sulfonylureas (e.g. Chlorpropamide™ (Pfizer), Tolbutamide™ (Upjohn), Acetohexamide™ (E. I. Lilly), Tolazamide™ (Upjohn)) and biguanides (e.g. Phenformin™ (Ciba Geigy), Mefformin™ (G. D. Searle)) as oral hypoglycemic agents, the treatment of diabetes remains less than satisfactory. The use of insulin, necessary in about 10% of diabetic patients in which synthetic hypoglycemic agents are not effective (Type I diabetes, insulin dependent diabetes mellitus), requires multiple daily doses, usually by self injection. Determination of the proper dosage of insulin requires frequent estimations of the sugar in urine or blood. The administration of an excess dose of insulin causes hypoglycemia, with effects ranging from mild abnormalities in blood glucose to coma, or even death. Treatment of non-insulin dependent diabetes mellitus (Type II diabetes, NIDDM) usually consists of a combination of diet, exercise, oral agents, e.g. sulfonylureas, and in more severe cases, insulin. However, the clinically available hypoglycemics can have other side effects which limit their use. In any event, where one of these agents may fail in an individual case, another may succeed. A continuing need for hypoglycemic agents, which may have fewer side effects or succeed where others fail, is clearly evident.
Atherosclerosis, a disease of the arteries, is recognized to be the leading cause of death in the United States and Western Europe. The pathological sequence leading to atherosclerosis and occlusive heart disease is well known. The earliest stage in this sequence is the formation of “fatty streaks” in the carotid, coronary and cerebral arteries and in the aorta. These lesions are yellow in color due to the presence of lipid deposits found principally within smooth-muscle cells and in macrophages of the intima layer of the arteries and aorta. Further, it is postulated that most of the cholesterol found within the fatty streaks, in turn, give rise to development of the “fibrous plaque”, which consists of accumulated intimal smooth muscle cells laden with lipid and surrounded by extracellular lipid, collagen, elastin and proteoglyeans. The cells plus matrix form a fibrous cap that covers a deeper deposit of cell debris and more extra cellular lipid. The lipid is primarily free and esterified cholesterol. The fibrous plaque forms slowly, and is likely in time to become calcified and necrotic, advancing to the “complicated lesion” which accounts for the arterial occlusion and tendency toward mural thrombosis and arterial muscle spasm that characterize advanced atherosclerosis.
Epidemiological evidence has firmly established hyperlipidemia as a primary risk factor in causing cardiovascular disease (CVD) due to atherosclerosis. In recent years, leaders of the medical profession have placed renewed emphasis on lowering plasma cholesterol levels, and low density lipoprotein cholesterol in particular, as an essential step in prevention of CVD. The upper limits of “normal” are now known to be significantly lower than heretofore appreciated. As a result, large segments of Western populations are now realized to be at particular high risk. Such independent risk factors include glucose intolerance, left ventricular hypertrophy, hypertension, and being of the male sex. Cardiovascular disease is especially prevalent among diabetic subjects, at least in part because of the existence of multiple independent risk factors in this population. Successful treatment of hyperlipidemia in the general population, and in diabetic subjects in particular, is therefore of exceptional medical importance.
Hypertension (or high blood pressure) is a condition which occurs in the human population as a secondary symptom to various other disorders such as renal artery stenosis, pheochromocytoma or endocrine disorders. However, hypertension is also evidenced in many patients in whom the causative agent or disorder is unknown. While such “essential” hypertension is often associated with disorders such as obesity, diabetes and hypertriglyceridemia, the relationship between these disorders has not been elucidated. Additionally, many patients display the symptoms of high blood pressure in the complete absence of any other signs of disease or disorder.
It is known that hypertension can directly lead to heart failure, renal failure and stroke (brain hemorrhaging). These conditions are capable of causing short-term death in a patient. Hypertension can also contribute to the development of atherosclerosis and coronary disease. These conditions gradually weaken a patient and can led to long-term death.
The exact cause of essential hypertension is unknown, though a number of factors are believed to contribute to the onset of the disease. Among such factors are stress, uncontrolled emotions, unregulated hormone release (the renin, angiotensin, aldosterone system), excessive salt and water due to kidney malfunction, wall thickening and hypertrophy of the vasculature resulting in constricted blood vessels and genetic factors.
The treatment of essential hypertension has been undertaken bearing the foregoing factors in mind. Thus a broad range of beta-blockers, vasoconstrictors, angiotensin converting enzyme inhibitors and the like have been developed and marketed as antihypertensives. The treatment of hypertension utilizing these compounds has proven beneficial in the prevention of short-interval deaths such as heart failure, renal failure and brain hemorrhaging. However, the development of atherosclerosis or heart disease due to hypertension over a long period of time remains a problem. This implies that although high blood pressure is being reduced, the underlying cause of essential hypertension is not responding to this treatment.
Hypertension has been associated with elevated blood insulin levels, a condition known as hyperinsulinemia. Insulin, a peptide hormone whose primary actions are to promote glucose utilization, protein synthesis and the formation and storage of neutral lipids, also acts to promote vascular cell growth and increase renal sodium retention, among other things. These latter functions can be accomplished without affecting glucose levels and are known causes of hypertension. Peripheral vasculature growth, for example, can cause constriction of peripheral capillaries; while sodium retention Sincreases blood volume. Thus, the lowering of insulin levels in hyperinsulinemics can prevent abnormal vascular growth and renal sodium retention caused by high insulin levels and thereby alleviate hypertension.
Cardiac hypertrophy is a significant risk factor in the development of sudden death, myocardial infarction, and congestive heart failure. These cardiac events are due, at least in part, to increased susceptibility to myocardial injury after ischemia and reperfusion which can occur in out-patient as well as perioperative settings. There is an unmet medical need to prevent or minimize adverse myocardial perioperative outcomes, particularly perioperative myocardial infarction. Both non-cardiac and cardiac surgery are associated with substantial risks for myocardial infarction or death. Some 7 million patients undergoing non-cardiac surgery are considered to be at risk, with incidences of perioperative death and serious cardiac complications as high as 20-25% in some series. In addition, of the 400,000 patients undergoing coronary by-pass surgery annually, perioperative myocardial infarction is estimated to occur in 5% and death in 1-2%. There is currently no drug therapy in this area which reduces damage to cardiac tissue from perioperative myocardial ischemia or enhances
Hoover Dennis J.
Hulin Bernard
Martin William H.
Treadway Judith L.
Benson Gregg C.
Goddard Carl J.
McKane Joseph K.
Pfizer Inc.
Richardson Peter C.
LandOfFree
Substituted N-( indole-2-carbonyl-) amides and derivatives... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Substituted N-( indole-2-carbonyl-) amides and derivatives..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substituted N-( indole-2-carbonyl-) amides and derivatives... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3127446