Semiconductor device manufacturing: process – Making device or circuit emissive of nonelectrical signal – Having diverse electrical device
Reexamination Certificate
2001-07-26
2003-06-24
Whitehead, Jr., Carl (Department: 2813)
Semiconductor device manufacturing: process
Making device or circuit emissive of nonelectrical signal
Having diverse electrical device
C257S421000, C343S7000MS
Reexamination Certificate
active
06582979
ABSTRACT:
FIELD OF THE INVENTION
The present invention is generally in the field of semiconductor chip packaging. More specifically, the present invention is in the field of leadless chip carrier design and structure.
BACKGROUND ART
The semiconductor fabrication industry is continually faced with a demand for smaller and more complex dies. These smaller and more complex dies must also run at higher frequencies. The requirement of smaller, more complex, and faster devices has resulted in new challenges not only in the fabrication of the die itself, but also in the manufacturing of various packages, structures, or carriers that are used to house the die and provide electrical connection to “off-chip” devices.
As an example, the demand for higher frequencies means, among other things, that “on-chip” and “off-chip” parasitics must be minimized. For example, parasitic inductance, capacitance, and resistance, which all adversely affect electrical performance of the die and its associated off-chip components must be minimized. Since RF (“Radio Frequency”) semiconductor devices run at high frequencies, those devices (i.e. RF devices) constitute a significant category of devices that specially require very low parasitics.
Recently, surface mount chips and chip carriers have gained popularity relative to discrete semiconductor packages. A discrete semiconductor package typically has a large number of “pins” which may require a relatively large space, also referred to as the “footprint,” to mount and electrically connect the discrete semiconductor package to a printed circuit board. Moreover, the cost and time associated with the manufacturing of the discrete semiconductor package and the cost and time associated with drilling a large number of holes in the printed circuit board are among additional reasons why alternatives such as surface mount devices and chip carriers have gained popularity.
There have been various attempts in the art to arrive at different chip carrier designs. Japanese Publication Number 10313071, published Nov. 24, 1998, titled “Electronic Part and Wiring Board Device,” on which Minami Masumi is named an inventor, discloses a structure in which to dissipate heat emitted by a semiconductor device. The structure provides metallic packed through-holes formed in a wiring board that transmit heat emitted from a bare chip through a heat dissipation pattern on the bottom of the wiring board, and then to a heat dissipation plate.
Japanese Publication Number 02058358, published Feb. 27, 1990, titled “Substrate for Mounting Electronic Component,” on which Fujikawa Osamu is named an inventor, discloses a substrate with a center area comprising eight thermally conductive resin-filled holes sandwiched between metal-plated top and bottom surfaces. An electronic component is then attached to the center area of the top metal-plated surface of the substrate with silver paste adhesive to improve heat dissipation and moisture resistance.
Japanese Publication Number 09153679, published Jun. 10, 1997, titled “Stacked Glass Ceramic Circuit Board,” on which Miyanishi Kenji is named an inventor, discloses a stacked glass ceramic circuit board comprising seven stacked glass ceramic layers. The multi-layer stacked glass ceramic circuit board further comprises a number of via holes comprising gold or copper with surface conductors on the top and bottom surfaces covering the via holes. The top conductor functions as a heat sink for an IC chip.
Japanese Publication Number 10335521, published Dec. 18, 1998, titled “Semiconductor Device,” on which Yoshida Kazuo is named an inventor, discloses a thermal via formed in a ceramic substrate, with a semiconductor chip mounted above the thermal via. The upper part of the hole of the thermal via is formed in a ceramic substrate in such a manner that it becomes shallower as it goes outward in a radial direction.
A conventional chip carrier structure for mounting a chip on a printed circuit board has a number of shortcomings. For example, conventional chip carriers still introduce too much parasitics and still do not provide a low inductance and resistance ground connection to the die. Conventional chip carriers also have a very limited heat dissipation capability and suffer from the concomitant reliability problems resulting from poor heat dissipation. As an example, in high frequency applications, such as in RF applications, several watts of power are generated by a single die. Since the semiconductor die and the chip carrier are made from different materials, each having a different coefficient of thermal expansion, they will react differently to the heat generated by the die. The resulting thermal stresses can cause cracking or a separation of the die from the chip carrier and, as such, can result in electrical and mechanical failures. Successful dissipation of heat is thus important and requires a novel structure and method.
The requirement of smaller, more complex, and faster devices operating at high frequencies, such as wireless communications devices and Bluetooth RF transceivers, has also resulted in an increased demand for small size antennas. Thus, the decrease in size of wireless communication devices has created a demand for a small size antenna that is integrated in the same “package” housing the semiconductor die coupled to the antenna. As stated above, a smaller, more complex semiconductor die operating at high frequencies requires a structure to support, house, and electrically connect the semiconductor die to a printed circuit board while providing low parasitics, efficient heat dissipation and a low inductance and resistance ground.
Therefore, there exists a need for a novel and reliable structure and method that houses, supports, and electrically connects a semiconductor die to an antenna embedded in the structure and which overcomes the problems faced by discrete semiconductor packages and conventional chip carriers. More specifically, there exists a need for a novel and reliable structure and method to embed an antenna in the structure that houses, supports and is electrically connected to a semiconductor die, while providing low parasitics, efficient heat dissipation and a low inductance and resistance ground.
SUMMARY OF THE INVENTION
The present invention is directed to structure and method for fabrication of a leadless chip carrier with embedded antenna. The present invention discloses a structure that provides efficient dissipation of heat generated by a semiconductor die. The present invention further discloses a structure that includes an embedded antenna and also provides low parasitics, and a low inductance and resistance ground connection to the semiconductor die.
In one embodiment, the present invention comprises a substrate having a top surface for receiving a semiconductor die. For example, the substrate can comprise an organic material such as polytetrafluoroethylene material or an FR4 based laminate material. By way of further example, the substrate can comprise a ceramic material. According to one aspect of the present invention, an antenna is patterned on the bottom surface of the substrate. The antenna is easily accessible by coupling it to a via and, through the via, to a substrate signal bond pad and a semiconductor die signal bond pad.
In one embodiment, the invention comprises at least one via in the substrate. The invention's at least one via provides an electrical connection between a signal bond pad of the semiconductor die and the printed circuit board. The at least one via can comprise an electrically and thermally conductive material such as copper. The at least one via provides an electrical connection between a substrate bond pad and the printed circuit board. The substrate bond pad is connected to the signal bond pad of the semiconductor die by a signal bonding wire. The at least one via also provides an electrical connection between the signal bond pad of the semiconductor die and a land that is electrically connected to the printed circuit board.
REFERENCES:
patent: 5506755 (1996-04-01), Miyagi et al.
p
Coccioli Roberto
Hashemi Hassan S.
Megahed Mohamed
Berezny Nema
Farjami & Farjami LLP
Jr. Carl Whitehead
Skyworks Solutions Inc.
LandOfFree
Structure and method for fabrication of a leadless chip... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Structure and method for fabrication of a leadless chip..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure and method for fabrication of a leadless chip... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3134508