Structural support for direct lid attach

Electricity: conductors and insulators – Boxes and housings – Hermetic sealed envelope type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S050510, C257S704000, C257S710000, C257S778000

Reexamination Certificate

active

06333460

ABSTRACT:

FIELD OF THE INVENTION
The present invention is generally related to semiconductor chip assembly and more specifically to methods for off loading mechanical load in solder connected semiconductor chips.
BACKGROUND OF THE INVENTION
The present invention is generally directed to an electronic chip assembly, which hereafter may also be referred to as a module, in which structural support is provided for a lid. More particularly, the present invention is directed to a structural support between the lid and substrate utilizing a curable material such as epoxy as a mechanism for off-loading mechanical load applied to the lid, particularly in those situations in which a compressive load is applied during chip operation. More particularly, the present invention is directed to an apparatus and method for supporting a lid through a ‘u’ channel which is bonded with a compliant adhesive to the substrate and which either retain the curable structural material for bonding to the lid or mate with the curable structural material that is retained in the lid, thereby providing a structural support configuration between the lid and substrate.
The present invention relates to semiconductor packaging for both single chip modules and multi-chip modules. One packaging technology employs chips that are disposed in the so-called flip-chip configuration. In this configuration small solder balls are affixed to an electronic circuit chip device at appropriate points on the device and the chip is affixed to and disposed against a substrate which contains electrical interconnections which correspond to and bond with the solder balls on the chip, thereby providing electrical signal paths to and from the chip device. Typically the packaging of devices in a flip chip configuration employs so called C
4
or solder bump chip-to-substrate interconnection technology. In general, in flip-chip configurations, where chip cooling is necessary, which is typically the case, a lid or heat spreader is affixed to the back side of the chip. In these flip-chip configurations, a majority of the chip cooling is provided by means of access to the back side of the chip. Such cooling may be active or passive in nature, but the present invention is applicable in either case.
This packaging technology is typically employed for high end, high speed electronic circuit chip devices typically used in computer systems. Because of the high speed and high power requirements for these chip devices, it is very desirable to ensure that there is a low resistance thermal path between the chip and its lid. In particular, two approaches that are useable for the thermal interface between the chip and its lid include (1) adhesives and (2) solder.
High-end flip-chip package design also frequently utilizes land grid array (LGA) interconnection techniques between the substrate and the card or board. In order to ensure reliable, low electrical resistivity connections between interconnection pads on the bottom of the substrate and corresponding interconnection pads on the top of the card via a compressible electrically conductive interposer, (hereafter referred to as an LGA socket), the module is typically clamped against the card during normal chip operation, (hereafter, said clamping is referred to as the LGA socketing load). Accordingly, it is very desirable to employ lid attachment mechanisms and structures which not only provide a reliable highly conductive thermal path but which also distribute this load across the lid and substrate in such a manner as to not negatively impact the structural integrity of the thermal interface, the chip, its interconnections, or the substrate.
Accordingly, it is seen that modules that have lids of Al, Cu, CuW, AlSiC, SiC, CuSiC, AlN, diamond, graphite, or other composite materials which are directly attached to a chip with adhesive or solder should employ structural support, at the module level, so as to prevent damage to the chip, its interconnections, the substrate, or the thermal interface. When the module uses LGA substrate-to-card interconnections and the LGA socketing load is applied through the lid, a lid support mechanism is desired so as to distribute the mechanical LGA socketing load through the supports, thus avoiding transmission of the full load through the chip itself and avoiding high substrate internal stresses.
However, it is noted that there are several features that any solution to this problem should address. In particular, it is noted that whatever mechanism is provided for this load distribution, it should fit within a low profile region having a thickness of less than approximately 1.0 mm between the lid and the substrate. Furthermore, the structure provided should be rigid after the lid is attached. Additionally, it is noted that there are requirements for a certain degree of compliance in the lateral direction as result of mismatches of thermal expansion between the materials employed within the structure. Specifically, there is a thermal expansion matching goal with respect to the lid and the substrate. In addition, the module structure employed should be able to support heavy (in the present context) lids. Accordingly, it is desirable to provide a rigid lid and a support structure which is rigid in the axis of the LGA socketing load and compliant in other planes. This structure would also be applicable in situations where there is a large heatsink weight. Again, the load from the lid and the heatsink would be off-loaded from the chip to the structural support. In addition, the structure can support an integral lid and heatsink design.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide structural support for a lid which is directly attached to an electronic integrated circuit chip device.
It is a object of the present invention to provide a structural support mechanism which is compliant in a lateral direction while at the same time being rigid in the direction normal to the lid and substrate.
It is a still further object of the present invention to provide a load bearing support which permits lateral differential expansion and contraction between lid materials, substrate materials, and chip materials due to differences in thermal coefficients of expansion and differences in thermal excursions.
It is yet another object of the present invention to provide a load bearing structure which is particularly suitable for the utilization of copper as a lid material.
It is also an object of the present invention to provide a lid support and attachment mechanism which will prevent damage to the substrate and is compatible with a glass ceramic substrate.
It is also an object of the present invention to provide a lid support and attachment mechanism which will prevent damage to the substrate and is compatible with an AlN substrate.
It is also an object of the present invention to prevent damage to circuit chip devices and to promote the utilization of LGA interconnection techniques for interconnection between the module and the card/board.
Lastly, but not limited hereto, it is an object of the present invention to provide improved thermal and mechanical packaging systems and materials for single chip and multi-chip modules.


REFERENCES:
patent: 5539151 (1996-07-01), Hamzehdoost et al.
patent: 5889323 (1999-03-01), Tachibana

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Structural support for direct lid attach does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Structural support for direct lid attach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structural support for direct lid attach will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2588920

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.