Storage subsystem, information processing system and method...

Electrical computers and digital processing systems: memory – Storage accessing and control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C711S004000, C711S113000, C711S114000, C710S001000, C710S005000, C710S006000

Reexamination Certificate

active

06671767

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a storage subsystem, an I/O interface control method, and an information processing system.
A large-scale information system (mainframe) used in bank online systems and the like comprises a central processing unit and a peripheral storage unit. The peripheral storage unit, which comprises a storage control unit and storage units, is called a storage subsystem. Hereinafter, a brief description will be made of an interface between the storage subsystem and the mainframe.
Between the central processing unit and the storage control unit which make up the storage subsystem oriented to the mainframe, the following information is transmitted for each I/O request: (1) command, (2) command response, (3) command response acceptance, (4) data, (5) status, and the like. These are transmitted in the form of frame to perform I/O request processing.
To execute an I/O request to a storage unit, the central processing unit creates a command group consisting of plural commands and data called a CCW chain. The central processing unit issues the first command of the command group to the storage control unit. Upon receiving the command, the storage control unit sends a command response frame to the central processing unit to indicate that a command frame has been received. In response to the command response frame, the central processing unit sends a command response acceptance frame to the storage control unit. At this moment, the central processing unit and the storage control unit both recognize that data sending and receiving has become possible, and subsequently, data sending and receiving is started between the central processing unit and the storage control unit. When data on the issued command has been sent or received, a status frame is sent from the storage control unit to the central processing unit to indicate an end status of the data transfer processing.
After receiving the status frame from the storage control unit, the central processing unit checks the contents of the status, and issues the next command if next command processing can continue. In this way, one CCW chain is successively processed while taking interlock in terms of command, command response, data transfer, and status sending for each command between the central processing unit and the storage control unit.
A CCW chain will be described in some detail. Commands constituting the CCW chain include: a Define Extent command (hereinafter referred to as a DX command) that specifies the legality of access to records, access mode, and the like; a Locate Record command (hereinafter referred to as a LOC command) that provides information for locating pertinent input-output data in a cylinder, track, and record; and read/write commands for specifying actual reading and writing.
One CCW chain consists of a chain of these plural commands. Upon receiving a LOC command, the storage control unit recognizes a cylinder, track, and record to be located from parameter data of the LOC command, and performs location processing.
The LOC command is followed by and chained to read/write commands. Processing of the read/write commands chained to the LOC command is performed for contiguous records beginning in a record located by the LOC command. A group of read/write commands thus following and chained to the LOC command is referred to as a LOC domain. A LOC domain number, that is, the number of read/write commands chained to a LOC command is specified by a parameter of the LOC command.
In one CCW chain to execute an I/O request, if the next record to be processed is not contiguous to a record processed immediately before, processing cannot be performed by an identical LOC domain and the next record to be processed must be located. In this case, the next record to be processed is located again by a LOC command. In this way, in processing for one CCW chain, when there is a read/write request for several discontinuous records, plural LOC domains will exist in the CCW chain.
Next, a description will be made of the operation of disconnecting a logical connection between the central processing unit and the storage control unit during the above described CCW chain execution.
When a read/write command is issued from the central processing unit to a storage unit under control of the storage control unit, if processing target data does not exist in a cache memory within the storage control unit, the data must be staged to the cache memory from the storage unit. In this case, the storage control unit cannot immediately execute the command. Therefore, the storage control unit sends a status to temporarily disconnect a logical connection between the central processing unit and the storage control unit to the central processing unit, and disconnects the logical connection. Thereafter, the moment the staging to the cache memory within the storage control unit is completed and preparations for I/O processing are complete, the storage control unit sends a connection interrupt request to the central processing unit to make a logical connection, and then makes a status report to indicate the resumption of I/O processing.
As described above, the storage control unit may, in some cases, disconnect a logical connection with the central processing unit because preparations for I/O processing are incomplete. Such disconnection factors include the following cases: (1) data does not exist on the cache memory within the storage control unit, so that the data is staged to the cache memory within the storage control unit from a storage unit; (2) a space cannot be allocated to the cache memory within the storage control unit, so that it is awaited that a free space occurs in the cache memory; and (3) a resource for I/O processing cannot be acquired because it is busy, so that it is awaited that the resource is released from the busy condition.
If such a disconnection operation frequently occurs during execution of an CCW chain, a total response time of I/O request processing will increase.
Next, one example of a technology for reducing an increase in response time due to cache misses will be described.
One of I/O request patterns is sequential access to records within a storage unit for processing, as typified by high-volume batch processing. In this case, a CCW chain consists of a DX command and LOC command as described previously, and plural read or write commands chained to the LOC command, and is characterized by processing contiguous records and tracks. Since processing target records are contiguous, read/write commands can be processed continuously without having to switch between LOC domains.
As described previously, if read/write target records are cache misses, since a logical disconnection between the central processing unit and the storage control unit occurs, response time will increase. In the case of this sequential access, however, even if the next command of the CCW chain is not received, since the next cylinder, track, and record to access can be predicted, by in advance staging the data on a cylinder, track, and record that will be processed to the cache memory, the chances to make disconnection between the central processing unit and the storage control unit can be reduced and response time is expected to be improved. By the way, whether the CCW chain is sequential access or not can be determined by referring to information indicating sequential access in the DX command.
On the other hand, another I/O request pattern is access to random records, as typified by access to a database. In the case of random access, since records to be accessed are distributed, before processing each record, location processing must be performed by a LOC command. Consequently, plural LOC domains exist in a CCW chain of random access. Unlike sequential access, with random access, since processing target records are not contiguous, the next record to be accessed cannot be predicted, so that data to be accessed cannot be staged in advance as it can be during sequential access. Consequently, it can be said that rando

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Storage subsystem, information processing system and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Storage subsystem, information processing system and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Storage subsystem, information processing system and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3134755

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.