Storage plate support for receiving disk-shaped storage plates

Chemistry: electrical and wave energy – Processes and products – Coating – forming or etching by sputtering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S192200, C204S298070, C204S298090, C204S298110, C204S298150, C118S720000, C118S721000, C118S724000, C118S725000, C156S345510, C156S345520, C156S345530, C156S345300, C427S569000, C427S128000, C427S131000, C427S132000, C216S067000, C216S071000

Reexamination Certificate

active

06802942

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The invention relates to a storage plate support as well as to the use of a storage plate support for processing optical storage plates.
Surface treatment of storage plates for information technology today takes place during the production of such plates primarily with processes in vacuum systems. Herein storage plates are treated for magnetic storage techniques as well as optical storage systems. For surface treatment plasma vacuum processes are often employed, for example for etching the surface, activating the surface, cleaning the surface and in particular depositing layers onto the plate. For the coating process often the widely used sputtering process is employed. Particularly advantageously the plates are coated individually in sequence and cyclically in compact installations. The station times are herein in the range of seconds in order to attain high throughputs for economical reasons.
In the case of magnetic storage plates, the plates onto which layers are applied are as a rule comprised of metal or glass, and, in the case of optical storage plates, optical plastics or polymers are preferably used. Especially during the sputtering process, in which a sputter target is sputtered with the aid of a plasma process at a distance of a few centimeters from the plate, the coating of the plate or of the disk in general entails a rather high introduction of heat, in particular since high deposition rates are necessary with the short required station times. The thermal loading is primarily due to electron bombardment, heat radiation, and kinetic as well as condensation and excitation energy of the coating material. In particular with polymer plates or substrates, and especially in the case of thin plates with low heat capacity, this leads to a temperature increase of the plate if this thermal energy is not sufficiently dissipated. In such cases it is possible for the synthetic plate, which typically is comprised of polycarbonate, to be plastically deformed such that it becomes unusable. Maintaining a safe maximum temperature and attaining a uniform temperature distribution over the plate are essential criteria for achieving good storage plate quality.
It is generally known that the heat transfer in a vacuum is very poor. This is especially the case at low temperature differences, for example of <100° C., such as should be reached in these applications. One option for cooling the plate comprises allowing the coating process in different process stations to proceed sequentially and to interspace one or several cooling stations in between, which cools the plate between the coatings before reaching maximum temperature. The heat transfer between a cooled face and the back of the plate can herein be improved by means of a heat transfer medium, such as for example helium. Short distances or even the supporting of the faces are herein advantageous and the pressure of the gas is increased up to the mbar range in the cooling station. In addition, attempts have been made to press the plate with the aid of electrostatic attraction against a cooled face and to improve the heat transfer by means of a gas cushion. In the case of flat rigid plate-form substrates or workpieces, attempts were furthermore made to hold these at the margin and to tighten it on a spherical arched surface, wherein also a contact pressure is generated which also makes possible gas cooling on the back side, as has been disclosed for example in U.S. Pat. No. 4,615,755. Apart from an improvement of the heat transfer with the aid of gases, contact materials have also been employed, such as tin foils, elastomers, or even paste-form materials.
Use of separate cooling stations between the process stations require considerable technical effort. Moreover, the cooling time is limited to a fraction of the total process time of the substrate, which, in turn, requires good heat transfer through high thermal conductivity and/or a cooling surface cooled below ambient temperature.
Electrostatic attraction of the substrate is difficult to realize especially in the case of nonconducting substrates and produces contact pressure which are significantly lower than the contact pressure which can be attained with conducting substrates. This could take place through a conducting coating of the substrates on the back side or generation of a minimally necessary conductivity in the substrate through suitable doping. But, in particular in the case of optical discs, this is not desired, since, apart from the higher substrate costs, the optical properties of the substrate can also be unfavorably impaired. Clamping the substrate at the outer margin and stretching it onto a spherical or cylindrical face requires stressing range causes stresses in the substrate material such that it can become plastically deformed. In addition, due to the large stressing range, the surface form of the substrate is changed such that thereby the uniformity of the coating is impaired.
SUMMARY OF THE INVENTION
The present invention addresses the problem of eliminating the disadvantages of prior art. In particular, the task of the present invention is to bring a substrate at a predetermined contact pressure into contact with a cooling face, such that the contact pressure is maximally uniformly distributed over the surface and uniform thermal contact occurs. The substrate is herein subjected to minimum flexing stress without the substrate undergoing plastic deformation and while making possible uniform coating.
This task is solved according to the invention through the characteristics of claim
1
. Further advantageous embodiments are contained in the dependent patent claims. According to the invention a storage plate support is developed in the region of the seating face for the storage plate such that it is annularly convexly arched such that the storage plate can be clamped in the center as well as also at its outer margin over this annularly convexly developed seating face. Thereby the storage plate assumes the slightly arched, convex form of the seating face after it is fastened. Thereby that this type of storage plate has an opening in the center, these plates can be tightened in this manner in the center as well as also along the outer margin over a mounting which is simultaneously developed as a mask to prevent coating on these sites. This annular, toroidal arching of the plate leads to a significantly more rigid disposition at higher and more uniformly distributed contact pressures over the face as has been possible within prior art and this takes place simultaneously with substantially lower required deflection. The plate is hereby less deformed and simultaneously this low deformation no longer has a negative effect onto the layer thickness distribution of the coating.
The convex flexure line does not necessarily need to be spherical. Due to the temperature gradient between front and back side of the substrate during the coating, this can for example also be taken into consideration in the form of the contact face through additional curvature forms. In particular due to the simple and defined maintainable geometry, the convexity is thus uniquely determined by the constraint conditions on the substrate, such as outer and inner seating, respective clamping condition, pressure forces onto the back side and thermal flexing forces due to temperature gradients in the substrate. A person skilled in the art can now apply known methods for calculating the necessary deformation, such as analytical or finite element calculation methods.
Apart from the form of the seating face, thermal contact can additionally be further improved through a gas cushion, preferably with a gas of high thermal conduction, such as for example helium. The maximum gas pressure should be below the contact pressure. Moreover, ductile metal foils, for example foils comprising tin, or elastomeric films can additionally be advantageously combined with the invention. The storage plate support can be employed for heating as well as also for cooling if it is corres

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Storage plate support for receiving disk-shaped storage plates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Storage plate support for receiving disk-shaped storage plates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Storage plate support for receiving disk-shaped storage plates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324339

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.