Electrical computers and digital processing systems: memory – Storage accessing and control – Specific memory composition
Reexamination Certificate
1999-11-10
2002-01-29
Thai, Tuan V. (Department: 2186)
Electrical computers and digital processing systems: memory
Storage accessing and control
Specific memory composition
C711S111000
Reexamination Certificate
active
06343342
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the storage and/or access of digital data. More particularly, the invention concerns a method, apparatus, and article of manufacture using a volume trailer to more efficiently store digital data on a direct access storage device (DASD) in emulation of sequential-access media. Another aspect of the invention concerns the access of data stored pursuant to the invention.
2. Description of the Related Art
Over the years, engineers have developed many different ways of digitally storing data. Two of the most popular involve sequential-access storage drives (i.e., tape media), and DASD. As an example, DASD storage includes magnetic hard disk drives and magnetic floppy diskettes. Tape storage, for instance, includes different electromagnetic or optical wound tapes, and may involve storage patterns such as linear, helical, and serpentine.
DASD and tape storage offer contrasting benefits and limitations. Thus, users may choose DASD for some storage needs, and tape for others. Along these lines, DASD and tape storage have each evolved through the years with contrasting storage formats. This is due to the different physical characteristics of the respective media. In particular, DASD-stored data is randomly accessible, by simply moving a read/write head directly to a specific sector and track location where a desired data item exists. In contrast, tape-stored data is accessed sequentially, by rewinding or advancing the tape until reaching the desired data item.
In tape storage, data is typically stored in units called “records” or “blocks”. Interspersed with the records are various headers, each of which contains information describing various characteristics of the associated data record. Adjacent header/record pairs are separated by an inter-block gap (IBG), which is a unique hardware-recognizable pattern of stored data. The IBGs are particularly advantageous when attempting to locate a particular data record on the tape. First, the tape is advanced to a point on the tape where the data record likely begins, or to a point where a group of records including the data record begins. Then, the tape head advances or rewinds, record-by-record, until the desired record is reached. Such movement of the tape head is conducted using the IBGs as guideposts.
In addition to individual record or “block” headers, a tape usually includes a volume header near the beginning of tape (BOT) point. The volume header includes various statistics concerning all records contained on the tape. The volume header is necessarily placed at the tape's beginning because, when a tape cartridge is first loaded to a tape drive, access of the tape begins at the BOT point. To locate the volume header elsewhere would require time consuming forwarding of the tape to reach the volume header.
The foregoing description of tape storage significantly contrasts with DASD storage. Although most formats of DASD storage use headers of various types, DASD storage does not require IBGs. This is because the DASD read/write head, by virtue of its inherent random access capability, can proceed directly to the desired data, without having to sequence record-by-record to find a desired record.
With the advent of virtual tape systems (VTSs), the line between DASD and tape storage has blurred. VTSs chiefly store data on tape, taking advantage of this inexpensive means of long term data storage. However, to expedite data exchanges, data is cached in DASD. According to a predetermined criteria, such as the data's age or recency/frequency of use, the data is backed up on tape. Cache misses result in older data being retrieved from tape and stored again in the DASD cache.
To maintain a consistent data storage format in VTS, it is desirable to use one substantially common tape-like storage format for both DASD and tape media. When this tape-like storage format is applied to DASD, however, some of the normal mechanisms for locating data on tape are no longer useful. Chiefly, the data is not stored with IBGs, which are inapplicable to the direct-access storage format. Even with IBGs, however, access to DASD data would be severely retarded by requiring the DASD head to sequence record-by-record through the data, when direct access is possible. Thus, certain improvements to strict tape storage formats are needed for storing data in the VTS environment, to take advantage of the inherently rapid data access potential of DASD storage.
SUMMARY OF THE INVENTION
Broadly, the present invention concerns the use of a volume trailer to more efficiently store and access digital data on/from a DASD to emulate sequential-access media. According to one particular embodiment, data is stored in records, logically assembled into record groups. Interspersed with the records, there may be one or more marker codes, which function like tape marks among the various data records. The volume trailer contains pointers to each record group, record counts for each group, marker code counts for each group, and indicators of whether records in each record group are of equal length. The volume trailer may also include a volume trailer “tail”, including information such as a byte count for the entire volume trailer, and a unique sequence identifying the volume trailer.
The statistics contained in the volume trailer enable substantially more efficient access of the data by a DASD. For example, the invention includes specific techniques employing record groupings, group counts, and/or marker code counts to perform operations such as locate, forward space file, and backward space file.
As an example, the locate routine starts by receiving identification of a target data record, such as a record number. Then, group count fields of the volume trailer are referenced to identify a target record group containing the target data record. The pointer field corresponding to the target record group points to its beginning address in storage. A beginning record header is read at the first address to determine whether the first record header corresponds to the target data record. If the first record header does not correspond to the target data record, the routine repeatedly advances to a succeeding record header and reads the succeeding record header until a record header corresponding to the target data record is read.
The forward space file routine advances from an original or “current” address to a target address containing the next marker code following the original address. First, the routine consults the volume trailer to determine the number of marker codes in the original record group. Then, if the original record group contains marker codes, the routine sequentially advances through each remaining record until a first marker code is reached. Otherwise, if the original record group does not contain any marker codes, or none was found after the starting point, the volume trailer is consulted to determine whether any record groups subsequent to the original record group contain any marker codes. If no record groups subsequent to the original record group contain any marker codes, an error message is issued.
Otherwise, if one or more record groups subsequent to the original record group contains any marker codes, the routine consults the volume trailer to identify a beginning address for a first one of said record groups subsequent to the original record group containing any marker codes, and sequentially reads each record header starting at the beginning address until reaching the first marker code in the first record group.
The backward space file routine of the invention proceeds in reverse from an original address to a target address containing the marker code previous to the original address. The routine first consults the volume trailer to determine the number of marker codes in the original record group. If the original record group contains marker codes, the routine consults the volume trailer to determine the beginning address of the original record group, and starting at the beginning
Dan Hubert & Assoc.
International Business Machiness Corporation
Thai Tuan V.
LandOfFree
Storage and access of data using volume trailer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Storage and access of data using volume trailer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Storage and access of data using volume trailer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2841187