Static information storage and retrieval – Floating gate – Particular connection
Reexamination Certificate
2000-02-29
2003-10-28
Lam, David (Department: 2818)
Static information storage and retrieval
Floating gate
Particular connection
C365S185260, C365S185280, C365S185290
Reexamination Certificate
active
06639835
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to semiconductor integrated circuits and, more particularly, to structures and methods for static NVRAM with ultra thin tunnel oxides.
BACKGROUND OF THE INVENTION
The use of the one device cell, invented by Dennard in 1967 (see generally, U.S. Pat. No. 3,387,286, issued to R. H. Dennard on Jun. 4, 1968, entitled “Field Effect Transistor memory”), revolutionized the computer industry, by significantly reducing the complexity of semiconductor memory. This enabled the cost, of what was then a scarce commodity, to be drastically reduced.
Today, dynamic random access memories (DRAMs) are a mainstay in the semiconductor industry. DRAMs are data storage devices that store data as charge on a storage capacitor. A DRAM typically includes an array of memory cells. Each memory cell includes a storage capacitor and an access transistor for transferring charge to and from the storage capacitor. Each memory cell is addressed by a word line and accessed by a bit line. The word line controls the access transistor such that the access transistor controllably couples and decouples the storage capacitor to and from the bit line for writing and reading data to and from the memory cell. Current DRAM technology requires a refreshing of the charge stored on the storage capacitor where the charge must be refreshed every so many milliseconds.
Over the course of time what was a very simple device (a planer capacitor and one transistor) has, because of ever shrinking dimensions, become a very complex structure, to build. Whether it is the trench capacitor, favored by IBM, or the stacked capacitor, used by much of the rest of the industry, the complexity and difficulty has increased with each generation. Many different proposals have been proposed to supplant this device, but each has fallen short because of either the speed of the write or erase cycle being prohibitively long or the voltage required to accomplish the process too high. One example of the attempt to supplant the traditional DRAM cell is the so-called electrically erasable and programmable read only memory (EEPROM), or more common today, flash memory.
Electrically erasable and programmable read only memories (EEPROMs) provide nonvolatile data storage. EEPROM memory cells typically use field-effect transistors (FETs) having an electrically isolated (floating) gate that affects conduction between source and drain regions of the FET. A gate dielectric is interposed between the floating gate and an underlying channel region between source and drain regions. A control gate is provided adjacent to the floating gate, separated therefrom by an intergate dielectric.
In such memory cells, data is represented by charge stored on the polysilicon floating gates. The charge is placed on the floating gate during a write operation using a technique such as hot electron injection or Fowler-Nordheim (FN) tunneling. Fowler-Nordheim tunneling is typically used to remove charge from the polysilicon floating gate during an erase operation. A flash EEPROM cell has the potential to be smaller and simpler than a DRAM memory cell. One of the limitations to shrinking a flash EEPROM memory cell has been the requirement for a silicon dioxide gate insulator thickness of approximately 10 nm between the floating polysilicon gate and the silicon substrate forming the channel of a flash field effect transistor. This gate thickness is required to prevent excess charge leakage from the floating gate that would reduce data retention time (targeted at approximately 10 years)
Current n-channel flash memories utilize a floating polysilicon gate over a silicon dioxide gate insulator of thickness of the order 100 Å or 10 nm in a field effect transistor. (See generally, B. Dipert et al.,
IEEE Spectrum
, pp. 48-52 (October 1993). This results in a very high barrier energy of around 3.2 eV for electrons between the silicon substrate and gate insulator and between the floating polysilicon gate and silicon oxide gate insulator. This combination of barrier height and oxide thickness results in extremely long retention times even at 250 degrees Celsius. (See generally, C. Papadas et al.,
IEEE Trans. on Electron Devices
, 42, 678-681 (1995)). The simple idea would be that retention times are determined by thermal emission over a 3.2 electron volt (eV) energy barrier, however, these would be extremely long so the current model is that retention is limited by F-N tunneling off of the charged gate. This produces a lower “apparent” activation energy of 1.5 eV which is more likely to be observed. Since the retention time is determined either by thermal excitation of electrons over the barrier or the thermally assisted F-N tunneling of electrons through the oxide, retention times are even longer at room temperature and/or operating temperatures and these memories are for all intensive purposes non-volatile and are also known as non volatile random access memories (NVRAMs). This combination of barrier height and oxide thickness tunnel oxide thickness is not an optimum value in terms of transfer of electrons back and forth between the substrate and floating gate and results in long erase times in flash memories, typically of the order of milliseconds. To compensate for this, a parallel erase operation is performed on a large number of memory cells to effectively reduce the erase time, whence the name “flash” or “flash EEPROM” originated since this effective erase time is much shorter than the erase time in EEPROMs.
P-channel flash memory cells, having gate oxide thicknesses of approximately 100 Å, have been reported (see generally, T. Ohnakado et al.,
Digest of Int. Electron Devices Meeting
, Dec. 10-13, 1995, Washington D. C., pp. 279-282; T. Ohnakado et al.,
Digest of Int. Electron Devices Meeting
, Dec. 8-11, 1996, San Francisco, pp. 181-184; T. Ohnakado et al.,
Proc. Symposium on VLSI Technology
, Jun. 9-11, 1998), Honolulu, HI, pp. 14-15) and disclosed (see U.S. Pat. No. 5,790,455, issued Aug. 4, 1998, entitled “Low voltage single supply CMOS electrically erasable read-only memory”). These reported and disclosed p-channel flash memory cells work similar to n-channel flash memory cells in that they utilize hot electron effects to write data on to the floating gate. If the magnitude of the drain voltage in a PMOS transistor is higher than the gate voltage, then the electric field near the drain through the gate oxide will be from the gate (most positive) towards the drain (most negative). This can and will cause hot electrons to be injected into the oxide and collected by the floating gate. The mechanisms reported are either channel hot electron injection, CHE, or band-to-band tunneling induced hot electron injection, BTB. The gate current in PMOS transistors (see generally, I. C. Chen et al.,
IEEE Electron Device Lett.
, 4:5, 228-230 (1993); and J. Chen et al.,
Proceedings IEEE Int. SOI Conf
., Oct. 1-3, 1991, pp. 8-9) can actually be much higher than the gate current in NMOS transistors (see generally, R. Ghodsi et al.,
IEEE Electron Device Letters
, 12:9, 354-356 (1998)) due to the BTB tunneling. Negatively, higher gate current in the PMOS transistors resulting from this BTB tunneling effect limits the performance of deep sub-micron CMOS technology, as reported by R. Ghodsi et al. In other words, the performance of the PMOS array is lowered because the response of the PMOS array is slower.
In co-pending, commonly assigned U.S. patent applications: “Dynamic Flash Memory Cells with UltraThin Tunnel Oxides,” Ser. No. 09/513,938, and “P-Channel Dynamic Flash Memory-Cells with UltraThin Tunnel Oxides,” Ser No. 09/514,627 dynamic memory cells base on floating gates, like those in flash memory cells, over ultrathin tunneling oxides, are disclosed. In these cases write and erase was accomplished by tunneling through the ultrathin gate oxides. The dynamic nature of the cell resulted from using relatively speaking larger potential variations and amounts of charge stored on the floating gates, as a consequence charge c
Lam David
Micro)n Technology, Inc.
Schwegman Lundberg Woessner & Kluth P.A.
LandOfFree
Static NVRAM with ultra thin tunnel oxides does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Static NVRAM with ultra thin tunnel oxides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Static NVRAM with ultra thin tunnel oxides will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3168852