Elongated-member-driving apparatus – With means to move or guide member into driving position – With means to assure correct orientation of member
Reexamination Certificate
1999-11-12
2001-10-16
Smith, Scott A. (Department: 3721)
Elongated-member-driving apparatus
With means to move or guide member into driving position
With means to assure correct orientation of member
C227S120000, C227S136000, C221S232000
Reexamination Certificate
active
06302310
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a cap feeding device for a staple or nail gun, as well as a staple or nail gun assembly and a cap assembly for use with a cap feeding device.
BACKGROUND OF THE INVENTION
Automatic nail guns, powered by compressed air or electricity, are used, for example, to attach roofing material, such as tarpaper, to the roof of a house. A generally flat cap is often used with each nail. A nail penetrates the cap and the tarpaper and protrudes into the underlying roof structure, attaching the roofing material to the roof surface.
Typically, an operator must manually place and hold a cap under the nose of a nail gun and then trigger the gun to drive a nail though the cap into the roof structure. The manual placement of caps presents a serious safety hazard to the operator because the operator's hand is close to the nose of the gun when a nail is driven through the nose of the gun. In addition, manual placement of caps is time-consuming and inefficient.
A cap feeding device may be employed to reduce the risk associated with manual placement of caps and to improve the efficiency of roofing operation. The cap feeding device automatically places a cap under the nose of a nail gun, and then the nail gun drives a nail through the cap and into the underlying roof structure.
A conventional cap feeding device generally includes a cap container and a base having a channel. The base extends between the cap container and a position under the nose of the nail gun. Caps are fed into the channel of the base from the cap container and pushed to the position under the nose of the nail gun. When the gun is triggered, a nail penetrates and dislodges the cap under the nose of the nail gun and protrudes into the underlying roof structure. The feeding of the caps under the nose of the nail gun is coordinated with the ejection of the nails through the nose of the nail gun, so that a cap is placed under the nose of the gun before the gun is triggered to expel a nail.
Conventional cap feeding devices have a number of drawbacks. For example, conventional cap feeding devices are generally heavy, putting additional stress on the operator's hand holding the nail gun. Also, many conventional cap feeding devices can only be installed close to the front end of a nail gun, making the nail gun not only heavy but also unbalanced with most of the weight placed at the front end of the gun. This makes the nail gun difficult to handle and may put stress on the operator's hand and wrist. In addition, with so many components placed near the nose of the gun, it is difficult to see the position of the nose of the gun, making a precise placement of a nail difficult.
The conventional cap feeding devices are installed close to the front end of the gun because designers need to place a conventional cap container close to the nose of the gun to reduce the weight of the cap feeding device. The reason is that in many devices a cap is pushed directly from the cap container to a position under the nose of the nail gun. Thus, if the cap container is far from the nose of the gun, a long shuttle is needed to push a cap from the container to the position under the nose of the nail gun through the channel of the base. In addition, an actuator, such as an air cylinder, with a long displacement is also needed to drive the shuttle. The displacement of the actuator should be about the same as the distance between the cap container and the nose of the nail gun. A long shuttle and actuator increase the weight and size of the cap feeding device. With the cap feeding device placed near the nose of the gun, the shuttle and actuator, thus the cap feeding device, can be made lighter, smaller and less expensive.
SUMMARY OF THE INVENTION
This invention provides a compact, light-weight cap feeding device that overcomes the problems associated with conventional nail guns and cap feeding devices.
In accordance with one aspect of the invention, a device, which is used to feed staple or nail caps having a diameter, includes a base, a container and a shuttle. The base includes cap feeding and cap holding chambers, and a channel connecting the two chambers. The distance between the cap feeding and cap holding chambers is at least twice the diameter of the caps. The container has a generally cylindrical configuration and is substantially perpendicular to the base. The container is operatively associated with the cap feeding chamber and is adapted to feed caps stored in the container into the cap feeding chamber one cap at a time. The shuttle is adapted to slide within the channel of the base and is adapted to move a cap at the cap feeding chamber through the channel towards the cap holding chamber by a distance equal to a diameter of the cap.
In accordance with another aspect of the invention, a staple or nail gun assembly includes a staple or nail gun and a cap feeding device. The staple or nail gun has a head portion and a handle portion. The head portion has an opening through which a staple or nail is expelled. The handle portion has first and second ends, the first end being attached to the head portion. The cap feeding device includes a base, a container and a shuttle. The base includes cap feeding and cap holding chambers, and a channel connecting the two chambers. The distance between the cap feeding and cap holding chambers is at least twice the diameter of the caps. The container has a generally cylindrical configuration and is substantially perpendicular to the base, facilitating the transfer of caps from the container to the cap feeding chamber. The container is operatively associated with the cap feeding chamber and is adapted to feed caps stored in the container into the cap feeding chamber one cap at a time. The shuttle is adapted to slide within the channel of the base and is adapted to move a cap at the cap feeding chamber through the channel towards the cap holding chamber by a distance equal to a diameter of the cap.
In accordance with a further aspect of the invention, a cap assembly for use with a cap feeding device includes a plurality of concentrically stacked staple or nail caps. Each cap has two opposite surfaces, and at least one of the surfaces of each cap is attached to one of the surfaces of another cap.
The cap feeding device and the staple or nail gun assembly of the present invention are compact and light-weight and thus have a number of advantages over the prior art. The weight of a staple or nail gun assembly in accordance to the present invention is substantially balanced. The weight of the staple or nail gun is mostly located at the front end of the gun handle, while the weight of the cap feeding device, especially the weight of the cap container, is mostly located at the rear end of the gun handle. Further, although the cap container is not placed near the nose of the gun, an actuator with a long displacement is not needed because a cap is not pushed directly from the cap feeding chamber to the cap holding chamber. The cap in the cap feeding chamber is pushed by the shuttle towards the cap holding chamber by a distance equal to the diameter of the cap (if the cap is circular). This cap pushes the cap in front of it in the channel towards the cap holding chamber by the same distance. The last cap is pushed into the cap holding chamber, where a staple or nail penetrates the cap in the cap holding chamber when the gun is triggered. In other words, there are at least three caps in the channel of the base, one at the cap feeding chamber, one at the middle position and one at the cap holding chamber. Each time after the gun is triggered, the caps are moved towards the cap holding chamber by a distance equal to the diameter of the caps. In addition, because most of the components of the cap feeding device are not located near the nose of the gun, an operator is able to see the nose of the gun better, allowing him to more precisely aim the nose of the gun.
REFERENCES:
patent: 2385521 (1945-09-01), Mead
patent: 2886815 (1959-05-01), Young
patent: 3261526 (1966-07-01), Novak
Garvey, Smith, Nehrbass & Doody, L.L.C.
Smith Scott A.
LandOfFree
Staple or nail gun assembly, cap feeding device for staple... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Staple or nail gun assembly, cap feeding device for staple..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Staple or nail gun assembly, cap feeding device for staple... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2577531