Staggered torsional electrostatic combdrive and method of...

Etching a substrate: processes – Etching of semiconductor material to produce an article...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C216S024000, C216S033000, C216S036000, C216S067000

Reexamination Certificate

active

06758983

ABSTRACT:

BRIEF DESCRIPTION OF THE INVENTION
This invention relates generally to Micro-Electro Mechanical Systems (MEMS). More particularly, this invention relates to a staggered torsional electrostatic combdrive that may be used to control a micromirror or paddle structure for mounted electronic components.
BACKGROUND OF THE INVENTION
Micro-Electro Mechanical Systems (MEMS), which are sometimes called micromechanical devices or micromachines, are three-dimensional objects having one or more dimensions ranging from microns to millimeters in size. The devices are generally fabricated utilizing semiconductor processing techniques, such as lithographic technologies.
There are on going efforts to develop MEMS with scanning mirrors, referred to as scanning micromirrors. It is a goal to use scanning micromirrors in the place of scanning macro-scale mirrors, which are used in a variety of applications. For example, macro-scale mirrors are used in: barcode readers, laser printers, confocal microscopes, and fiber-optic network components. There are significant limitations to the performance of macro-scale scanners; in particular, their scanning speed, power consumption, cost, and size often preclude their use in portable systems. Scanning micromirrors could overcome these problems. In addition, higher-frequency optical scanning could enable new applications that are not practical with conventional scanning mirrors, such as raster-scanning projection video displays, and would significantly improve the performance of scanning mirrors in existing applications, such as laser printers. MEMS optical scanners promise to enable these new applications, and dramatically reduce the cost of optical systems.
Unfortunately, previously demonstrated MEMS mirrors have not been able to simultaneously meet the requirements of high scan speed and high resolution. A plethora of micromirror designs have been presented, but not one has been able to satisfy the potential of MEMS: a high-speed, high-performance scanning mirror.
In view of the foregoing, it would be highly desirable to provide a high-speed, high-performance scanning micromirror system. Such a system should include improved system components, such as an improved combdrive for implementing scanning operations.
SUMMARY OF THE INVENTION
A staggered torsional electrostatic combdrive includes a stationary combteeth assembly and a moving combteeth assembly with a mirror and a torsional hinge. The moving combteeth assembly is positioned entirely above the stationary combteeth assembly by a predetermined vertical displacement during a combdrive resting state. A method of fabricating the staggered torsional electrostatic combdrive includes the step of deep trench etching a stationary combteeth assembly in a first wafer. A second wafer is bonded to the first wafer to form a sandwich including the first wafer, an oxide layer, and the second wafer. A moving combteeth assembly is formed in the second wafer. The moving combteeth assembly includes a mirror and a torsional hinge. The moving combteeth assembly is separated from the first wafer by the oxide layer. The oxide layer is subsequently removed to release the staggered torsional electrostatic combdrive.
The micromirror of the invention fulfills the potential of micromachined mirrors over conventional scanning mirrors—high scan speed, small size, and low cost with diffraction-limited optical performance. The scan speed of the micromirror is difficult to achieve with large-scale optical scanners, and exceeds the performance of previously demonstrated micromachined scanning mirrors.


REFERENCES:
patent: 5428259 (1995-06-01), Suzuki
patent: 5496436 (1996-03-01), Bernstein et al.
patent: 5804084 (1998-09-01), Nasby et al.
patent: 5959760 (1999-09-01), Yamada et al.
patent: 5995334 (1999-11-01), Fan et al.
patent: 6133670 (2000-10-01), Rodgers et al.
patent: 6150275 (2000-11-01), Cho et al.
patent: 6201629 (2001-03-01), McClelland et al.
patent: 6308573 (2001-10-01), Lee et al.
patent: 6544863 (2003-04-01), Chong et al.
patent: 6628041 (2003-09-01), Lee et al.
patent: PCT/US01/15514 (2001-05-01), None
Kam Y. Lau, “Microscanner Raster-scanning Display: A Spyglass for the Future”, Optics & Photonic News, May 1999 vol.. 10 No. 5, pp. 47-50, 84.
Nee et al. “Stretched-Film Micromirrors For Improved Optical Flatness”, IEEE MEMS 2000 Conference, Jan. 23-27, 2000, Miyazaki, Japan.
Conant et al. “Robustness and Reliability of Micromachined Scanning Mirrors”, MOEMS 1999, Mainz Germany, Aug. 1999.
Hagelin et al. “Integrated Micromachined Scanning Display Systems”, presented at 18thCongress of the International Commission for Optics, San Francisco, CA, Aug. 1999.
Conant et al. “A Raster-Scanning Full-Motion Video Display Using Polysilicon Micromachined Mirrors”, proc. Transducers '99, Sendai, Japan, Jun. 1999, pp. 376-379.
Hart et al.“Time-Resolved Measurement of Optical Mems Using Stroboscopic Interferometry”, proc. Transducers '99, Sendai, Japan, Jun. 1999, pp. 470--473.
Nee et al. “Scanning Blazed-Grating for High-Resolution Spectroscopy”, 1998 Workshop for Solid State Sensors and Actuators (HH '98) Late News Poster Session Supplemental Digest, Hilton Head Island, Jun. 8-11, 1998, pp. 9-10.
Kiang et al. “Surface-Micromachined Diffraction Gratings for Scanning Spectroscopic Application”, proc. Transducers '99, Sendai, Japan, Jun. 1999, pp. 998-1001.
Nee et al. “Lightweight, Optically Flat Micromirrors for Fast Beam Steering”, IEEE/LEOS Optical MEMS 2000, Kauai, Hawaii, Aug. 21-24, 2000.
Conant et al. “A Flat High-Frequency Scanning Miromirror”, 2000 Workshop for Solid State Sensors and Actuators (HH2000), Hilton Head Island, SC, USA, Jun. 4-8, 2000, pp. 6-9, Digest of Technical Papers.
Conant et al. “Cyclic Fatigue Testing of Surface-Micromachined Thermal Actuators”, 1998 ASME International Mechanical Engineering Congress and Exposition, Nov. 15-20, 1998, Anaheim, CA DSC-vol. 66, pp. 273-277.
Cotton et al., “Wide-angle geocornal telescope: a He-II 304-A plasmaspheric imager”, Optical Engineering, Dec. 1993, vol. 32 No. 12, pp. 3170-3173.
Hart et al., “Stroboscopic phase-shifting interferometry for dynamic characterization of optical MEMS”, 18th Congress of the International Commission for Optics, ICO XVIII Aug. 2-6, 1999, San Francisco, CA USA, Optics for the Next Millennium, Technical Digest SPIE vol. 3749, pp. 468-469.
Hoon et al, “A Model for SIMOX Buried-Oxide High-Field Conduction”, IEEE Transactions on Electron Devices, vol. 43, No. 11, Nov. 1996.
Hyodo et al., “An HDR System Hydraulics Model and Detailed Analysis of the 1991 Circulation Test at the Hijiori HDR Site, Japan”, Geothermal Resources Council Transactions, vol. 198, Oct. 1995, pp. 263-268.
Hyodo et al., “An HDR System Hydraulics Model and Analysis of the 1995 Preliminary Circulation Test at the Hijiori HDR Site of the NEDO Project, Japan”, Twentieth Stanford Workshop on Geothermal Reservoir Engineering, pp. 23-24.
Wright et al., “Hydraulic Fracture Orientation and Production/Injection Induced Reservoir Stress Changes in Diatomite Waterfloods”, Society of Petroleum Engineers, pp. 139-151.
Wright et al., “Reorientation of propped refracture treatments”, Eurock '97 ç 1994 Balkema, Rotterdam, ISBN 90 5410 502 X, pp. 417-424.
Yap et al., “Conduction Mechanisms Through Simox Buried Oxide”, in Proceedings of 1993 IEEE International SOI Conference, Palm Springsm, CA, USA, Oct. 5-7, 1993, pp. 32-33.
Yap et al. “A Model for High-Field Conduction in Simox Buried Oxides”, in Proceedings of 1994 IEEE International SOI Conference, Nantucket, MA, USA, Oct. 3-6, 1994, pp. 93-94.
Yao and MacDonald, “Single Crystal Silicon Supported Thin Film Micromirrors for Optical Applications”, Opt. Eng., 36(5):1408-1413, May 1997.
Yeh et al., “Integrated Polysilicon and DRIE Bulk Silicon Micromachining for an Electrostatic Torsional Actuator”, J. Microelectromechanical Systems, 8(4):456-465, Dec. 1999.
Yeh et al. “Mechanical Digital-To-Analog Converters”, proc. Transducers '99, Sendai, Japan, Jun. 9999, pp. 998-1001.
Yoon et al. “Use of High-Field Electrical Te

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Staggered torsional electrostatic combdrive and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Staggered torsional electrostatic combdrive and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Staggered torsional electrostatic combdrive and method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3213126

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.