Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Foam or foamable type
Reexamination Certificate
2001-04-06
2003-01-28
Bhat, Nina (Department: 1761)
Food or edible material: processes, compositions, and products
Products per se, or processes of preparing or treating...
Foam or foamable type
C426S567000
Reexamination Certificate
active
06511694
ABSTRACT:
FIELD OF THE INVENTION
invention relates to soft frozen desserts that can be stored for extended periods of time and that include a sweetener composition comprising sucrose and maltose.
BACKGROUND OF THE INVENTION
Frozen dessert products such as ice cream, ice milk, gelato, milk shakes, frozen yogurt, sherbet, pudding, and sorbet have wide consumer appeal. Some frozen dessert products such as milk shakes and “soft serve” products derive at least part of their consumer appeal from their soft texture. To deliver a pleasing product to consumers, frozen desserts should be resistant to changes resulting from heat shock during shipping, handling, and storage. Heat shock arises from either cyclic change in temperature causing partial thawing and refreezing of the product or elevated temperatures over an extended period of time. Heat shock can affect frozen desserts at temperatures well below the freezing point of pure water because some of the water in frozen desserts is not frozen at typical storage temperatures. Heat shock promotes ice crystal growth that imparts a gritty texture to the dessert product. Heat shock frequently also produces a separation of the syrupy aqueous phase from the air and fat matrix that ultimately makes the appearance and texture of the product unacceptable. The gritty texture and diminished appearance detract from the general quality of the product. It has been particularly challenging to deliver frozen dessert products that are both resistant to heat shock and soft.
Stabilizing gums have been added in an attempt to improve the heat shock stability of frozen desserts. Examples of stabilizing gums that have traditionally been added to ice cream include gum acacia, guar gum, locust bean gum, carrageenan, xanthan gum, alginate, pectin, and the like. Microcrystalline cellulose and carboxymethylcellulose are often used in combination with stabilizing gums to modify mouth feel. Hydrocolloidal stabilizers function to reduce the diffusion of water molecules and, therefore, to help prevent the formation of large ice crystals.
Although the gums improve stability, they have several drawbacks. The quantity of stabilizing gums required for effective heat shock stability often results in a frozen dessert product that has an unacceptable slick or gummy mouth feel. Although stabilizing gums are often derived from naturally produced substances, consumers tend to perceive a product that contains gums as one that contains artificial rather than natural ingredients. The gums also tend to make the frozen dessert harder. Hardness affects other properties of the frozen dessert such as, for example, ease of extrusion into containers and scooping.
While high molecular weight hydrocolloids are used to improve the heat shock stability of frozen desserts, lower molecular weight sweetener compositions have been used to improve the softness of frozen desserts. One approach to improving the softness of frozen desserts has been to increase the amount of sucrose added relative to the amount of fat or water in the product. However, the large amount of sucrose required for acceptable softness often results in a taste that is too sweet.
The use of sucrose in combination with corn syrup is known for frozen desserts. Corn syrup solids tend to be less sweet than sucrose and depress the freezing point less. Corn syrup is commercially available with various dextrose concentrations. If the dextrose content is too high, the product can cause a throat burning sensation when consumed.
Fructose, a monosaccharide, can also be used to replace some of the sucrose, a disaccharide, in frozen desserts. However, large amounts of monosaccharide can depress the freezing point to such an extent that ice crystals fail to form and the product is runny.
Still another approach to softness improvement has been to increase the amount of incorporated air and thereby decrease the amount of water per unit volume that can freeze. This attempt not only results in a texture that is more characteristic of a whipped topping than of a frozen dessert like ice cream, but is also limited by the applicable standards of identity relating to required weight per volume and solids content of the various frozen dessert products. High overrun frozen desserts can also lack foam stability, resulting in collapse and containers that appear to be underfilled.
As a result of the difficulty of producing frozen dessert products that are both stable and soft, soft frozen desserts are typically manufactured locally and sold for immediate consumption. Soft frozen desserts are usually dispensed at temperatures between 16° F. (−9° C.) and 24° F. (−4° C.). Many soft frozen products become hard if stored at about −15° F. (−26° C.), the temperature used for the storage and distribution of the majority of other frozen desserts. It would be advantageous if a soft frozen dessert could be delivered to consumers through the extensive network of frozen food storage, distribution, and retailing facilities that exists nationwide at temperatures close to −15° F. (−26° C.).
SUMMARY OF THE INVENTION
The invention provides frozen dessert compositions and methods for making such compositions. In particular, the invention provides frozen dessert composition containing a sweetener composition comprising maltose and sucrose. As used herein, the term “sweetener composition” refers to all the saccharides except lactose present in a frozen dessert composition such as monosaccharides, disaccharides, trisaccharides, and saccharides with higher degrees of polymerization. Maltose and sucrose are both disaccharides.
The invention provides a frozen dessert composition containing about 15 to about 35 weight percent of a sweetener composition based on the weight of the frozen dessert. The sweetener composition comprises about 30 to about 90 weight percent sucrose and about 10 to about 70 weight percent maltose based on the total weight of the sweetener composition with a sucrose to maltose ratio (sucrose: maltose) of at least 0.5:1. In other embodiments, the sucrose to maltose ratio is at least 1:1 or at least 1.5:1. The desserts can be either dairy or non-dairy and can be regular fat, reduced fat, or non-fat products. The products include, for example, ice cream, ice milk, gelato, milk shakes, frozen yogurt, pudding, sherbet and sorbet.
Another aspect of the invention provides a frozen dessert composition containing about 5 to about 15 weight percent non-fat milk solids and about 15 to about 35 weight percent of a sweetener composition based on the total weight of the frozen dessert. The sweetener composition contains about 30 to about 90 weight percent sucrose and about 10 to about 70 weight percent maltose based on the total weight of the sweetener composition with a sucrose to maltose ratio (sucrose: maltose) of at least 0.5:1. In other embodiments, the sucrose to maltose ratio is at least 1:1 or at least 1.5:1. The frozen dessert composition can be used to prepare a variety of regular fat, low fat, or non-fat dairy products.
In still another aspect of the invention, a frozen dessert composition is provided that contains about 0.5 to about 25 weight percent fat, about 5 to about 15 weight percent non-fat milk solids, and about 15 to about 35 weight percent of a sweetener composition based on the total weight of the frozen dessert. The sweetener composition contains about 30 to about 90 weight percent sucrose and about 10 to about 70 weight percent maltose based on the total weight of the sweetener composition with a sucrose to maltose ratio (sucrose: maltose) of at least 0.5:1. In other embodiments, the sucrose to maltose ratio is at least 1:1 or at least 1.5:1. The frozen dessert composition can be used to prepare a variety of low or regular fat containing dairy products.
Yet another aspect of the invention provides a frozen dessert composition containing condensed skim milk, heavy cream, sucrose, high maltose corn syrup, egg yolk, flavoring agent, and water in an amount to provide total percent solids of about 45 to about 55 weight per
Harcourt Eric David
Huang Victor Tsangmin
Rosenwald Diane Rae
Bhat Nina
Frawley Annette M.
O'Toole John A.
Taylor Douglas J.
The Pillsbury Company
LandOfFree
Stable soft frozen desserts does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Stable soft frozen desserts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stable soft frozen desserts will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3021873