Fluid sprinkling – spraying – and diffusing – Container for non-fluid material – and scattering means – Rotating scatterer
Reexamination Certificate
2000-01-07
2001-04-03
Scherbel, David A. (Department: 3752)
Fluid sprinkling, spraying, and diffusing
Container for non-fluid material, and scattering means
Rotating scatterer
C239S666000, C239S673000, C239S676000, C239S688000
Reexamination Certificate
active
06209808
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to a spreader attachment utilized to evenly distribute material, and specifically to a spreader attached to a farm vehicle to distribute granular and/or powdery material.
2. Discussion of the Related Art
Farmers, landscapers, and others needing to spread material over large areas need a spreading device that will allow for rapid distribution of the material being spread, covering a large area in an even spread pattern, completed in a reasonably short period of time. The spreading device often determines the success of the operation. While there have been many spreaders brought to the marketplace, the prior art spreaders do not produce a uniform distribution in a cost efficient manner. Those spreaders that do effect a uniform distribution fail to spread over a sufficiently large enough area to keep the operation within reasonable costs.
Dual disc centrifugal spreaders are well known in the art. They generally are comprised of flat discs that cast off particulate material in a horizontal plane. To achieve maximum results, these discs must maintain constant circumferential speed. The power to turn the discs generally comes from either rotating wheels contacting the ground translated through various gearing mechanisms, or power comes via a power take-off drive. While power take-off drives generally produce more constant circumferential speed, both powering methods produce irregularities in the scatter pattern over the entire scatter width, leading to overspreading of material and/or bald spots from underspreading of material, both of which cause irregular plant growth.
While higher circumferential disc speeds provide more uniform scatter patterns, they oftentimes provide too strong of an overlapping pattern in the center (behind the vehicle), laying down excess material. When the circumferential disc speed is reduced, the periphery of the scatter pattern becomes very steep outwardly, resulting in reduced spreading in the center (behind the vehicle).
Typical in the prior art, centrifugal spreaders have scoop members provided on the rotating discs for catching the ejected material and hurling this material centrifugally outward onto the ground. Both straight edge scoop members and curved scoop members having their concave side directed toward the rotating direction of the disc have been utilized to attain as broad a dispersion zone as possible by increasing the hurling distance of the material centrifugally outward of the discs.
To achieve a uniform spreading pattern, it is important for centrifugal spreaders to have the material to be spread fall upon the rotating disc within a definite area. U.S. Pat. No. 3,406,915 to Dreyer, et al. achieves this through the use of a releasable or pivotable shoot or tube underneath the opening in the hopper.
U.S. Pat. No. 3,109,657 to Dreyer is directed to a centrifugal spreader for particle fertilizer material. Material ejects out the side of a storage bin onto rotating discs having one curved scoop member and one straight scoop member. The curved member is C-shaped in cross section but maintains a constant height along the length of the member. The material feeds directly from the storage bin onto the rotating discs, the left disc, when viewed from behind, rotating clockwise and the right disc rotating counter clockwise.
U.S. Pat. No. 4,842,202 to van der Lely et al. is directed to a spreader with a hopper having two delivery parts. Distribution members are provided under the delivery parts for broadcasting material fed to them from the hopper. The distribution members are mounted on a carrier rigidly supported by and coupled to the hopper. Because the material is stored directly over the discs, a frame having significant rigidity is required.
The material feeds from the hopper directly to outlet orifices at the bottom of the hopper onto two circular discs. The discs rotate counter to one another. Each disc contains blades having a geometry that flares outward at a 15° angle, including a blade visually flaring, and a blade structure directed away from the rotary axis.
What is needed, therefore, is an improved device that will provide a uniform scatter pattern and throw width, while also providing an optimal overlapping of the scatter pattern produced by multiple discs, both toward the outside or periphery of the pattern, and in the area directly behind the vehicle.
SUMMARY
The present invention is directed to an apparatus that satisfies the need to provide a substantially uniform scatter pattern and throw width of material being spread, providing an optimal overlapping of the scatter pattern produced by multiple discs, both towards the outside or periphery of the pattern, and in the area directly behind the vehicle, utilizing a light weight unit and in a cost efficient manner.
In one form, the present invention includes at least one pair of funnel units, each having a first end opposed to a second end. The funnel units are mechanically attached in a substantially vertical plane adjacent to a hopper having a dispensing outlet for dispensing material to each of the funnel units first end.
There are at least one pair of rotating discs consisting of a first disc rotating counter-clockwise, when viewed from behind, positioned left of a second disc rotating clockwise. These first and second discs have a plurality of blades mechanically attached thereon for dispensing the material in a pre-selected pattern. The first and second discs are each rotatably positioned below one of the funnel unit second ends, so as to receive material passing through the funnel units. Each funnel unit directs the material to at least one designated impact point on each of the rotating discs.
In another form, the present invention has at least one pair of funnel units each having a first end opposed to a second end. The funnel units are mechanically attached in a substantially vertical plane remotely from a hopper having a dispensing outlet for dispensing material. A conveyor transports the material from the dispensing outlet to each of the funnel unit first ends.
There are at least one pair of rotating discs consisting of a first disc rotating counter-clockwise when viewed from behind, positioned left of a second disc rotating clockwise. The first and second discs have a plurality of blades mechanically attached thereon for dispensing said material in a pre-selected pattern. The first and second discs each are rotatably positioned below one of the funnel unit second ends to receive material passing through the funnel units. Each funnel unit directs the material to at least one designated impact point on each of the rotating discs.
In yet another form, the present invention receives material from a hopper which is located above a structural component of a vehicle.
An advantage of the present invention is that the specific direction of rotation of the discs (that is, the left disc, when viewed from behind, rotating counter-clockwise and the right disc rotating clockwise), provides for an increase in the width of the spread pattern with even coverage throughout the spread pattern, allowing for delivery of more product in fewer passes equaling a lower cost per acreage to deliver the material.
Another advantage of the present invention is that the funnels, utilizing deflecting vanes, allow for complete control over the point of impact of the material onto the rotating discs, allowing for increased control of the spread pattern and evenness of material spread throughout the pattern.
Still another advantage of the present invention is that the blade design allows for increased width of the spread pattern, while still maintaining even spread throughout the pattern.
Still another advantage of the present invention is the ability to locate the hopper which holds the material above a structural component of the vehicle. Because the hopper and material (comprising the bulk of the weight) is supported by the structural component of the vehicle, the spreader attachment of the present invention may be
Ganey Steven J.
GVM, Incorporated
Maria Carmen Santa
McNees Wallace & Nurick
Scherbel David A.
LandOfFree
Spreader attachment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spreader attachment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spreader attachment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2510143