Static information storage and retrieval – Systems using particular element – Magnetoresistive
Reexamination Certificate
1999-11-08
2001-08-14
Le, Vu A. (Department: 2824)
Static information storage and retrieval
Systems using particular element
Magnetoresistive
C365S145000, C365S154000, C365S157000
Reexamination Certificate
active
06275411
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to ferromagnetic thin-film structures exhibiting relatively large magnetoresistive characteristics and, more particularly, to such structures used for the storage and retrieval of digital data Many kinds of electronic systems make use of magnetic devices including both digital systems, such as memories, and analog systems such as magnetic field sensors. Digital data memories are used extensively in digital systems of many kinds including computers and computer systems components, and digital signal processing systems. Such memories can be advantageously based on the storage of digital symbols as alternative states of magnetization in magnetic materials provided in each memory storage cell, the result being memories which use less electrical power and do not lose information upon removals of such electrical power.
Such memory cells, and magnetic field sensors also, can often be advantageously fabricated using ferromagnetic thin-film materials, and are often based on magnetoresistive sensing of magnetic states, or magnetic conditions, therein. Such devices may be provided on a surface of a monolithic integrated circuit to provide convenient electrical interconnections between the device and the operating circuitry therefor.
Ferromagnetic thin-film memory cells, for instance, can be made very small and packed very closely together to achieve a significant density of information storage, particularly when so provided on the surface of a monolithic integrated circuit. In this situation, the magnetic environment can become quite complex with fields in any one memory cell affecting the film portions in neighboring memory cells. Also, small ferromagnetic film portions in a memory cell can lead to substantial demagnetization fields which can cause instabilities in the magnetization state desired in such a cell.
These magnetic effects between neighbors in an array of closely packed ferromagnetic thin-film memory cells can be ameliorated to a considerable extent by providing a memory cell based on an intermediate separating material having two major surfaces on each of which an anisotropic ferromagnetic memory thin-film is provided. Such an arrangement provides significant “flux closure,” i.e. a more closely confined magnetic flux path, to thereby confine the magnetic field arising in the cell to affecting primarily just that cell. This result is considerably enhanced by choosing the separating material in the ferromagnetic thin-film memory cells to each be sufficiently thin. Similar “sandwich” structures are also used in magnetic sensors.
In the recent past, reducing the thicknesses of the ferromagnetic thin-films and the intermediate layers in extended “sandwich” structures, and adding possibly alternating ones of such films and layers, i.e. superlattices, have been shown to lead to a “giant magnetoresistive effect” being present in some circumstances. This effect yields a magnetoresistive response which can be in the range of up to an order of magnitude or more greater than that due to the well known anisotropic magnetoresistive response.
In the ordinary anisotropic magnetoresistive response, varying the difference occurring between the direction of the magnetization vector in a ferromagnetic thin-film and the direction of sensing currents passed through that film leads to varying effective electrical resistance in the film in the direction of the current. The maximum electrical resistance occurs when the magnetization vector in the field and the current direction therein are parallel to one another, while the minimum resistance occurs when they are perpendicular to one another. The total electrical resistance in such a magnetoresistive ferromagnetic film can be shown to be given by a constant value, representing the minimum resistance, plus an additional value depending on the angle between the current direction in the film and the magnetization vector therein. This additional resistance has a magnitude characteristic that follows the square of the cosine of that angle.
Operating magnetic fields imposed externally can be used to vary the angle of the magnetization vector in such a film portion with respect to the easy axis of that film. Such an axis comes about in the film because of an anisotropy therein typically resulting from depositing the film during fabrication in the presence of an external magnetic field oriented in the plane of the film along the direction desired for the easy axis in the resulting film. During subsequent operation of the device having this resulting film, such operational magnetic fields imposed externally can be used to vary the angle to such an extent as to cause switching of the film magnetization vector between two stable states which occur for the magnetization being oriented in opposite directions along the film's easy axis. The state of the magnetization vector in such a film can be measured, or sensed, by the change in resistance encountered by current directed through this film portion. This arrangement has provided the basis for a ferromagnetic, magnetoresistive anisotropic thin-film to serve as a memory cell.
In contrast to this arrangement, the resistance in the plane of a ferromagnetic thin-film is isotropic for the giant magnetoresistive effect rather than depending on the direction of the sensing current therethrough as for the anisotropic magnetoresistive effect. The giant magnetoresistive effect involves a change in the electrical resistance of the structure thought to come about from the passage of conduction electrons between the ferromagnetic layers in the “sandwich” structure, or superlattice structure, through the separating nonmagnetic layers with the resulting scattering occurring at the layer interfaces, and in the ferromagnetic layers, being dependent on the electron spins. The magnetization dependant component of the resistance in connection with this effect varies as the sine of the absolute value of half the angle between the magnetization vectors in the ferromagnetic thin-films provided on either side of an intermediate nonmagnetic layer. The electrical resistance in the giant magnetoresistance effect through the “sandwich” or superlattice structure is lower if the magnetizations in the separated ferromagnetic thin-films are parallel and oriented in the same direction than it is if these magnetizations are antiparallel, i.e. oriented in opposing or partially opposing directions. Further, the anisotropic magnetoresistive effect in very thin films is considerably reduced from the bulk values therefor in thicker films due to surface scattering, whereas a significant giant magnetoresistive effect is obtained only in very thin films. Nevertheless, the anisotropic magnetoresistive effect remains present in the films used in giant magnetoresistive effect structures.
As indicated above, the giant magnetoresistive effect can be increased by adding further alternate intermediate nonmagnetic and ferromagnetic thin-film layers to extend a “sandwich” structure into a stacked structure, i.e. a superlattice structure. The giant magnetoresistive effect is sometimes called the “spin valve effect” in view of the explanation that a larger fraction of conduction electrons are allowed to move more freely from one ferromagnetic thin-film layer to another if the magnetizations in those layers are parallel than if they are antiparallel or partially antiparallel to thereby result in the magnetization states of the layers acting as sort of a “valve.”
Thus, a digital data memory cell based on the use of structures exhibiting the giant magnetoresistive effect is attractive as compared to structures based on use of an anisotropic magnetoresistive effect because of the larger signals obtainable in information retrieval operations with respect to such cells. Such larger magnitude signals are easier to detect without error in the presence of noise thereby leading to less critical requirements on the retrieval operation circuitry.
A memory cell structure suitable for permitting the storing and re
Daughton James M.
Everitt Brenda A.
Pohm Arthur V.
Kinney & Lange , P.A.
Le Vu A.
Nonvolatile Electronics Incorporated
LandOfFree
Spin dependent tunneling memory does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spin dependent tunneling memory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spin dependent tunneling memory will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2439850