Error detection/correction and fault detection/recovery – Pulse or data error handling – Digital data error correction
Reexamination Certificate
2007-04-10
2007-04-10
Dildine, R. Stephen (Department: 2133)
Error detection/correction and fault detection/recovery
Pulse or data error handling
Digital data error correction
Reexamination Certificate
active
10834115
ABSTRACT:
A method of decoding soft input information related to a transmitted word of a linear block code (n, k) and providing hard or soft output information is disclosed. The method comprises the steps of forming a reliability vector from the input information, identifying (n−k) linearly independent least reliable symbols and k most reliable symbols, converting a parity check matrix of the linear block code to a pseudo-systematic form with respect to the least reliable symbols, calculating extrinsic information and composite information for the most reliable symbols using the soft input information and the pseudo-systematic parity check matrix, and calculating extrinsic information for the least reliable systems using composite information for the most reliable symbols.
REFERENCES:
patent: 5563897 (1996-10-01), Pyndiah et al.
patent: 5930272 (1999-07-01), Thesling
patent: 6145114 (2000-11-01), Crozier et al.
patent: 6460162 (2002-10-01), Buda et al.
patent: 6718508 (2004-04-01), Lodge et al.
patent: 1168633 (2002-01-01), None
patent: 2 675 970 (1992-10-01), None
patent: 2003283341 (2003-10-01), None
A. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically optimum Decoding Algorithm”, IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-269, Apr. 1967.
G. Forney, “The Viterbi Algorithm”, Proc. IEEE, vol. 61, No. 3, pp. 268-278, Mar. 1973.
L. Bahl, J. Cocke, F. jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate”, IEEE Trans. On Inform. Theory, vol. IT-20, pp. 284-287, Mar. 1974.
P. Robertson, E. Villebrun, and Po. Hoeher, “A Comparison of Optimal and Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain”, Proceedings of ICC '95, Seattle, pp. 1009-1013, Jun. 1995.
P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and Sub-Optimal Maximum a Posteriori Algorithms Suitable for Turbo Decoding”, European Transactions on Telecomm., vol. 8, No. 2, pp. 119-125, Mar.-Apr. 1997.
S. Pietrobon, “Implementation and Performance of a Turbo/MAP Decoder”, International Journal of Satellite Communications, vol. 15, No. 1, pp. 23-46, Jan./Feb. 1998.
J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and Convolutional Codes”, IEEE Trans. On Inform Theory, vol. 42, No. 2, pp. 429-445, Mar. 1996.
J. Erfanian, S. Pasupathy, G. Gulak, “Reduced Complexity Symbol Detectors with Parallel Structures for ISI Channels”, IEEE Trans. On Communications, vol. 42, No. 2/3/4, pp. 1661-1671, Feb./Mar./Apr. 1994.
P. Robertson and Thomas Wörz, “Bandwidth-Efficient Turbo Trellis-Coded Modulation Using Punctured Component Codes,”IEEE Journal on Selected Areas of Communication, vol. 16, No. 2, Feb. 1998.
Kerr, “Vector Soft-in-soft-out Decoding of Linear Block Codes”, 22ndBiennial Symposium on Comm. Of Queens University, Kingston. ′Online! May 31-Jun. 3, 2004, pp. 1-3 XP002322164 www.crc.ca/en/html/fec/home/publications/papers/LOD04—ZBSC—VectorSISOLineare.pdf.
Lucas et al, “On Iterative Soft-Decision Decoding of Linear Binary Block Codes and Product Codes”, IEEE Journal on Selected Areas in Communications, vol. 16, No. 2, Feb. 1998; pp. 276-296, XP000741782; ISSN: 0733-8716.
Fossorier et al, “Soft-Decision Decoding of Linear Block Codes based on Ordered Statistics”, IEEE Transactions on Information Theory, vol. 41, No. 5, Sep. 1, 1995, pp. 1379-1396, XP000542626, ISSN: 0018-9448.
Fossier et al, “Soft-Input Soft-Output Decoding of Linear Block Codes based on Ordered Statistics”, Proc. Of Globecom 1998, Sydney, Australia, Nov. 1998, pp. 2828-2833.
Guinand Paul
Kerr Ron
Lodge John
Dildine R. Stephen
Her Majesty the Queen in Right of Canada as represented by the M
MacLean Doug
Teitelbaum Neil
Teitelbaum & MacLean
LandOfFree
Soft input decoding for linear codes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Soft input decoding for linear codes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Soft input decoding for linear codes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3755670