Snail, new tumoral progression marker and target protein of...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S007100, C436S501000

Reexamination Certificate

active

06617121

ABSTRACT:

This is a 371 of PCT/ES00/00226 filed Jun. 27, 2000.
INVENTION SECTOR
Biomedicine. Target protein for antitumoral compounds.
System for identification of candidates for antitumoral compounds.
Tumour invasion and metastasis markers, their use as diagnostic markers of the disease and as a guide to medical professionals in the selection or evaluation of treatments.
PRIOR ART
The protein E-cadherin has not only been shown to mediate intercellular adhesion of epithelial cells during embryonic development and in adult tissues, but also to be implicated in the phenotypic transformation observed in epithelial tumours during their progression into invasive tumours. In this process of invasion by the tumour cells, expression of the protein E-cadherin is reduced or abolished and this loss is associated with the acquisition of migratory properties. Functional alterations of E-cadherin and/or its associated proteins, catenins, have been associated with de-differentiation and greater aggressivity of tumours (Takeichi, M. Cadherins in cancer: implications for invasion and metastasis. Curr. Op. Cell Biol. 5, 806-811 (1993); Birchmeier, W. & Behrens, J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta 1198, 11-26 (1994)] and have even been seen to be implicated in the transition from adenomas to invasive carcinomas [Perl, A. K., P. Wilgenbus, U. Dahl, H. Semb & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190-193 (1998).]. For all of these reasons, the E-cadherin gene has been considered to be a tumoral invasion suppressor gene [Frixen, U. H., et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol 113, 173-185 (1991); Vleminckx, K., Vakaet, L. J., Mareel, M., Fiers, W. & Van Roy, F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66, 107-119 (1991); Miyaki, M. et al. Increased cell-substratum adhesion, and decreased gelatinase secretion and cell growth, induced by E-cadherin transfection of human colon carcinoma cells. Oncogene 11, 2547-2552 (1995); Llorens, A. et al. Downregulation of E-cadherin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab. Invest. 78, 1-12 (1998).] so that the molecular mechanisms which control its expression or function are of the utmost importance in increasing our knowledge of tumour invasion processes.
Expression of the E-cadherin gene is regulated by several elements located in the 5′ proximal region of its promoter [Behrens, J., Löwrick, O., Klein, H. L. & Birchmeier, W. The E-cadherin promoter: functional analysis of a GC-rich region and an epithelial cell-specific palindromic regulatory element. Proc. Natl. Acad. Sci. USA 88, 11495-11499 (1991); Ringwald, M., Baribault, H., Schmidt, C. & Kemler, R. The structure of the gene coding for the mouse cell adhesion molecule uvomorulin. Nucleic Acids Res. 19, 6533-6539 (1991); Bussemakers, M. J., Giroldi, L. A., van Bokhoven A. & Schalken, J. A. Transcriptional regulation of the human E-cadherin gene in human prostate cancer cell lines: characterization of the human E-cadherin gene promoter. Biochem. Biophys. Res. Commun. 203, 1284-1290 (1994); Giroldi, L. A. et al. Role of E-boxes in the repression of E-cadherin expression. Biochem. Biophys. Res. Commun. 241, 453-458 (1997)]. Of these, the E-pal element, which contains two E-boxes, has been identified in the E-cadherin promoter in mice (between positions −90 and −70) and is important because it acts as a repressor in normal cells and transformed cells deficient in E-cadherin [Behrens, J., Löwrick, O., Klein, H. L. & Birchmeier, W. The E-cadherin promoter: functional analysis of a GC-rich region and an epithelial cell-specific palindromic regulatory element. Proc. Natl. Acad. Sci. USA 88, 11495-11499 (1991); Hennig, G., Lowrick, O., Birchmeier, W & Behrens, J. Mechanisms identified in the transcriptional control of epithelial gene expression. J. Biol. Chem. 271, 595-602 (1996); Faraldo; M. L., Rodrigo, I., Behrens, J., Birchmeier, W & Cano, A. Analysis of the E-cadherin and P-cadherin promoters in murine keratinocyte cell lines from different stages of mouse skin carcinogenesis. Mol. Carcinog. 20, 33-47 (1997); Rodrigo, I., Cato, A. C. B. & Cano, A. Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp. Cell Res. 248, 358-371 (1999)]. The transcription factors which interact with this element or in the corresponding region of the promoter of the human cadherin gene [Bussemakers, M. J., Giroldi, L. A., van Bokhoven A. & Schalken, J. A. Transcriptional regulation of the human E-cadherin gene in human prostate cancer cell lines: characterization of the human E-cadherin gene promoter. Biochem. Biophys. Res. Commun. 203, 1284-1290 (1994); Giroldi, L. A. et al. Role of E-boxes in the repression of E-cadherin expression. Biochem. Biophys. Res. Commun. 241, 453-458 (1997)] are unknown.
Potential transcription factors which are repressors of the expression of the E-cadherin gene could be of great value in the identification of new antitumoral candidates which act by inhibiting the function of these factors, and consequently the invasive and metastatic process. Furthermore, their presence could be used as markers of tumour spread and malignancy.
DESCRIPTION
Brief Description
The transcription factor Snail has been identified as a repressor of the expression of E-cadherin, as it has a direct interaction with the E2 box of the E-pal element of the promoter. The ectopic expression of Snail in epithelial cells induces epithelial-mesenchymal transition and the acquisition of migratory properties concomitant with inhibition of E-cadherin expression and the loss of other epithelial differentiation markers. This invention presents and includes the following:
a new target protein for the identification of new antitumoral compounds, and
a new marker of tumour invasion and metastasis and its application as a diagnostic marker of the disease and as a guide to medical professionals in the selection or evaluation of treatments.
Detailed Description
Snail is a Transcription Factor Which Acts as a Direct Repressor of E-cadherin Expression.
Identification of transcription factors which interact with the E-pal element was undertaken by means of a one-hybrid approximation using the mouse E-pal sequence (−90/−70) oligomerised to direct the expression of the HIS3 gene of S. cerevisiae as bait and a cDNA gene library of NIH3T3 fused to the GAL4 activation domain as a prey. A total of 130 clones were isolated, capable of interacting with (and directing the transcription of the reporter gene HIS3) the construction containing the native E-pal element; they did not recognise the mutated oligomeric element. This mutated form of the E-pal element contains 2 modified bases (TT instead of GC) which eliminate the E2 box. This mutated form has been described as being responsible for abolishing the repressor effect in the E-cadherin Promoter in mice (Hennig, G., Löwrick, O., Birchmeier, W. & Behrens, J. Mechanisms identified in the transcriptional control of epithelial gene expression. J. Biol. Chem. 271, 595-602 (1996); Faraldo, M. L., Rodrigo, I., Behrens, J., Birchmeier, W & Cano, A. Analysis of the E-cadherin and P-cadherin promoters in murine keratinocyte cell lines from different stages of mouse skin carcinogenesis. Mol. Carcinog. 20, 33-47 (1997).
Sequentiation of the isolated clones revealed that 49% of them contained inserts which encoded the complete or partial sequence of the mouse Snail cDNA [Nieto, M. A., Bennet, M. F., Sargent, M. G. & Wilkinson, D. G. Cloning and developmental expression of Sna, a murine homologue of the
Drosophila snail gene. Development
116, 227-237 (1992); Smith, D. E., D

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Snail, new tumoral progression marker and target protein of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Snail, new tumoral progression marker and target protein of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snail, new tumoral progression marker and target protein of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3112597

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.