Smart card system and methods for proving dates in digital...

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Particular communication authentication technique

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S400000, C713S152000

Reexamination Certificate

active

06792536

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to digital data files, and more particularly to a smart card system and methods for proving dates in such digital data files.
2. Statement of the Prior Art
Scope of the Problem
Digital data files come in many formats. None of those formats currently provide means for proving—with certainty—dates and times associated with access, creation, modification, receipt, or transmission of such digital data files. This is not only due to the variety of application programs which are available for digital data file access, creation, modification, receipt, and transmission, but also due to the much more varied “standards” and protocols put forth in the vain attempt to provide uniformity worldwide.
Illustrative of the enormity of the problem are the following operating environments, within which the system and methods according to the present invention can provide the much-needed but often ignored time certainty.
Digital Document Processing
“Processing” may be viewed as the manipulation of data within a computer system. Since virtually all computer systems today process digital data, processing is the vital step between receiving the data in binary format (i.e., input), and producing results (i.e., output)—the task for which computers are designed.
The
Microsoft® press Computer Dictionary
, 3
d Edition
(1997) defines the term document as “ . . . any self-contained piece of work created with an application program and, if saved on disk, given a unique filename by which it can be retrieved.” Most people think of documents as material done by word processors alone. To the typical computer, however, data is little more than a collection of characters. Therefore, a database, a graphic, or a spreadsheet can all be considered as much a document as is a letter or a report. In the Macintosh environment in particular, a document is any user-created work named and saved as a separate file.
Accordingly, for the purpose of the invention described herein, digital document processing shall be interpreted to mean the manipulation of digital (i.e., binary) data within a computer system to create or modify any self-contained piece of work with an application program and, if saved on a disk or any other memory means, given a unique filename by which it can be retrieved. Examples of such application programs with which the present invention may be used to assist in such digital document processing are: Microsoft® Access 97, Microsoft® Excel 97, and Microsoft® Word 97, each available from Microsoft Corporation, Redmond, Wash. U.S.A.
Digital Communications
“Communications” may be broadly defined as the vast discipline encompassing the methods, mechanisms, and media involved in information transfer. In computer-related areas, communications usually involve data transfer from one computer to another through a communications medium, such as a telephone, microwave relay, satellite link, or physical cable.
Two primary methods of digital communications among computers presently exist. One method temporarily connects two computers through a switched network, such as the public telephone system. The other method permanently or semi-permanently links multiple workstations or computers in a network. In reality, neither method is distinguishable from the other, because a computer can be equipped with a modem, which is often used to access both privately owned and public access network computers.
More particular forms of digital communications (i.e., exchange of communications in which all of the information is transmitted in binary-encoded, digital format) include electronic mail (or less formally “e-mail”), facsimile, voicemail, and multimedia communications.
E-mail may be broadly defined as the exchange of text messages/computer files over a communications network, such as a local area network (LAN) or the Internet, usually between computers or terminals. Facsimile (or, again, less formally “fax”) comprises the transmission and reception of text or graphics over telephone lines in digitized form. Conventional fax machines scan an original document, transmit an image of the document as a bit map, and reproduce the received image on a printer. Resolution and encoding of such fax messages are standardized in the CCITT Groups 1-4 recommendations. Fax images can likewise be sent and received by computers equipped with fax hardware and software.
The CCITT Groups 1-4 recommendations make up a set of standards recommended by the Comité Consultatif International Télégraphique et Téléphonique (now known as the International Telecommunication Union) for encoding and transmitting images over fax machines. Groups 1 and 2 relate to analog devices, which are generally out of use. Groups 3 and 4 deal with digital devices, and are outlined below.
Group 3 is a widespread standard that supports “standard” images of 203 horizontal dots per inch (dpi) by 98 vertical dpi, and “fine” images of 203 horizontal dpi by 198 vertical dpi. Group 3 devices support two methods of data compression. One is based on the Huffman code, and reduces an image to 10 to 20 percent of the original. The other, known as “READ” (for “relative element address designate”), compresses an image to about six to twelve percent (~6%-12%) of its original. Additionally, the READ method provides for password protection as well as polling, so that a receiving machine can request transmission as appropriate.
Group 4 is a newer standard, which supports images of up to 400 dpi. Its method of data compression is based on a beginning row of white pixels, or “dots”, with each succeeding line encoded as a series of changes from the line before. Images are compressed to about three to ten percent (~3%-10) of the original. Group 4 devices do not include error-correction information in their transmission. Moreover, they require an Integrated Services Digital Network (ISDN) phone line rather than a traditional dial-up line.
Fax modems may also be used to send and receive digital data encoded in known fax formats (e.g., one of the CCITT groups noted above). Such data is either sent or received by a fax machine or another modem, which then decodes the data and converts it to an image. If the data was initially sent by fax modem, the image must previously have been encoded on the computer hosting such fax modem. Text and graphic documents can be converted into fax format by special software that is usually provided with the fax modem. Paper documents must first be scanned in. As is well known, fax modems may be internal or external and may combine fax and conventional modem capabilities.
Voicemail generally comprises a system that records and stores telephone messages in a computer's memory. Unlike a simple answering machine, voicemail systems include separate mailboxes for multiple users, each of whom can copy, store, or redistribute messages. Another type of digital communications involving voice is “voice messaging”, a term which generally refers to a system that sends and receives messages in the form of sound recordings. Typical voice messaging systems may employ “voice modems”, which are modulation/demodulation devices that support a switch to facilitate changes between telephony and data transmission modes. Such a device might contain a built-in loudspeaker and microphone for voice communication, but more often it uses the computer's sound card.
Still another form of digital communications includes multimedia communications in the style of “video teleconferencing”, as defined by the International Telecommunication Union (formerly CCITT) in “Visual Telephone Systems and Equipment for Local Area Networks Which provide a Non-Guaranteed Quality of Service,” (Recommendation H.323, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, May 1996) and other similar such standards.
Digital Imaging
“Digital imaging” encompasses those known processes involved in the capture, storage, display, and printing of graphical images. They may involve devices known as a “digital cam

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Smart card system and methods for proving dates in digital... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Smart card system and methods for proving dates in digital..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Smart card system and methods for proving dates in digital... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3199735

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.