Abrasive tool making process – material – or composition – With inorganic material – Metal or metal oxide
Reexamination Certificate
1999-12-28
2002-02-19
Marcheschi, Michael (Department: 1755)
Abrasive tool making process, material, or composition
With inorganic material
Metal or metal oxide
C051S307000, C051S308000, C106S003000, C438S692000, C438S693000, C451S036000
Reexamination Certificate
active
06348076
ABSTRACT:
TECHNICAL FIELD
The present invention relates to slurry compositions that are especially useful for polishing or planarizing a surface. The present invention is especially use for polishing or planarizing copper used as interconnect wiring in integrated circuit devices such as semiconductor wafers containing copper damascene and dual damascene features. The present invention also relates to polishing processes employing the compositions of the present invention.
BACKGROUND OF THE INVENTION
In the microelectronics industry, during the manufacture of an integrated circuit, surfaces that are typically scratch-free are polished for the purpose of planarizing the structure involved and/or removing unwanted material. The polishing involved is chemical mechanical polishing (CMP). For example, metals such as aluminum, copper, and tungsten are planarized. Moreover, there is typically a refractory metal liner beneath the aluminum, copper or tungsten providing good adhesion to the underlying insulator and good contact resistance to lower level moralizations. The liners can be niobium, tantalum and titanium alone or in combination with their nitrides, or any other refractory metal. Recently copper and alloys of copper have been developed as the chip interconnect/wiring material especially for VLSI and ULSI semiconductor chips.
The use of copper and copper alloys results in improved device performance when compared to Al and its alloys.
In fabricating the semiconductor devices, the metallic interconnect material of wiring structure such as copper or its alloys typically starts as a blanket electrodeposited film over a layer of dielectric which has trenched features etched into its surface. The deposited copper film fills the pre-etched gaps or trenches in the dielectric, and leaves a metal overabundance on the surface of the wafer which must be removed. Once the metal overabundance has been removed, an inlaid metal wiring structure is left on the surface of the wafer. This process is referred to as the damascene process. In general, the chemical mechanical polishing (CMP) involves a circular/orbital motion of a wafer under a controlled downward pressure with a polishing pad saturated with a conventional polishing slurry. In this manner, removal of the metal overabundance, and replanarization of the wafer surface is accomplished. More recently, polishing pads which are impregnated with suitable abrasive particles are being used for CMP processing. For a more detailed explanation of chemical mechanical polishing, please see U.S. Pat. Nos. 4,671,851, 4,910,155 and 4,944,836, the disclosures of which are Incorporated herein by reference.
Polishing slurries used for CMP of metals are typically aqueous suspensions comprised of a metal oxide abrasive such as alumina or silica, organic acids, surfactants, chelates, and a suitable oxidizing agent. The role of the abrasive is to facilitate material removal by mechanical action. The oxidizing agent works to enhance mechanical removal via a corrosion assisted process. Such oxidizing agents employed in commercially-available or proprietary slurries are typically inorganic metal salts such as FeNO
3
, or KIO
3
, as well as hydrogen peroxide, present in significant concentrations. Other chemicals added to slurries to improve dispersion or otherwise enhance performance often are inorganic acids (e.g. HCl, H
2
SO
4
, HNO
3
) Sodium, potassium, and iron salts and/or compounds are frequently used in slurry formulations. Complexing or chelating agents are present to prevent free copper ion buildup in the process slurry which can lead to pad discoloration and increased oxidizer reactivity. These additives generally improve the polish performance of the CMP slurry.
One concern with current CMP slurries for Cu is that they provide polish rates of 1500 to 1700 Angstroms/minutes. Thus long polish times are required to remove 1 to 2 microns of Cu in Back End Of the Line (BEOL) applications. In addition, these processes employ high downforce, typically about 6 psi. This coupled with a high overpolish times result in severe Cu dishing and oxide erosion.
It would therefore be desirable to provide a process for polishing of Cu which overcomes the dishing and erosion problems. Moreover, the polishing process should also avoid scratching the copper surface, which is susceptible to scratching because it is relatively soft. Furthermore, the polishing slurry should provide high selectively towards Cu versus any liner material in contact with the Cu.
Further, by way of background, a description of selective polishing and CMP can be found in U.S. Pat. No. 5,676,587 to Landers at al. entitled “Selective Polish Process for Titanium, Titanium Nitride, Tantalum Nitride” which is incorporated herein by reference. Further, Ser. No. 09/307,123 filed May 7, 1999 to Feeney et al. (BU998-100) entitled “CMP Slurry of Tantalum”, which is incorporated herein by reference, is referenced to show slurry compositions and their use. Also, Ser. No. 60/105,470 filed Oct. 23, 1998 by P. M. Feeney et al. (BU997-115) entitled “(PF/CUPI/JB) Method of Fabricating Copper Wiring Utilizing Chemical-Mechanical Polish” which is incorporated herein by reference shows an example of a slurry and if Cu CMP polishing. In addition, Ser. No. 08/965,218 filed Nov. 6, 1997 U.S. Pat. No. 6,102,237 by C. Huynh et al. (YO-997229A) , entitled “A PH-Buffered Slurry and Use Thereof For Polishing” which is incorporated herein by reference to shows an example of a slurry composition.
SUMMARY OF THE INVENTION
The present invention provides slurry compositions having significantly increased polish rates such as at least about 3,000 angstroms/minute, along with the need for a relatively low downforce of 6 psi or less. Accordingly, the present invention provides a significant reduction in polish times. The invention provides a slurry that can operate with low down force resulting in minimization of Cu recess and oxide erosion during CMP.
Moreover, the present invention provides a slurry that provides high selectivity towards Cu versus one of Ta, TaN, Ti, TiN, W, combinations thereof, and other liner materials by a judicious selection of the components of the composition and their relative amounts. In particular, the present invention relates to a slurry composition comprising about 10 to about 50 grams/liter of an oxidizing agent; about 1 to about 5% by weight of abrasive particles; about 0.5 to about 30 ml/l of a surface active agent; and about 0.1 to about 5 grams/liter of a polyelectrolyte. In addition, when the compositions are used for polishing copper, about 0.5 to about 5 grams/liter of a copper corrosion inhibitor are also included in the composition
Preferably, the slurry combination comprises two parts wherein Part A comprises the oxidizing agent, and abrasive particles; Part B comprises the surface active agent and polyelectrolyte; and, when employed, the copper corrosion inhibitor can be included in Part A and/or Part B.
The present invention provides a slurry that leaves a cleaner polished surface.
The present invention also relates to polishing a surface which comprises providing an the surface to be polished the above disclosed slurry; and polishing the surface by contacting it with a polishing pad.
According to preferred aspects of the present invention, the polishing process comprises point of use mixing by separately applying Part A and Part B to the surface to be polished and the polishing the surface by contacting it with a polishing pad.
Still other objects and advantages of the present invention will become readily apparent by those skilled in the art from the following detailed description, wherein it is shown and described preferred embodiments of the invention, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, without departing from the invention. Accordingly, the description is to be regarded as il
Canaperi Donald F.
Cote William J.
Feeney Paul
Krishnan Mahadevaiyer
Liu Joyce C.
Connolly Bove Lodge & Hutz
Marcheschi Michael
Trepp, Esq. Robert M.
LandOfFree
Slurry for mechanical polishing (CMP) of metals and use thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Slurry for mechanical polishing (CMP) of metals and use thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Slurry for mechanical polishing (CMP) of metals and use thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2953253