Electronic digital logic circuitry – Tri-state – With field-effect transistor
Reexamination Certificate
1999-06-15
2001-01-09
Tokar, Michael (Department: 2818)
Electronic digital logic circuitry
Tri-state
With field-effect transistor
C326S083000, C326S057000
Reexamination Certificate
active
06172522
ABSTRACT:
TECHNICAL FIELD
The invention relates to CMOS circuits and particularly to predriver circuits which preceed off-chip drivers. Even more particularly the invention relates to CMOS predriver circuits which include a capability of pulling an output node up or down in a controlled fashion. The output node may control an input of a following off-chip driver.
BACKGROUND OF THE INVENTION
Semiconductor chips which contain CMOS logic circuits are well known and widely used throughout the electronic industry because of their inherent high speed performance with relatively low power consumption. A single CMOS logic chip may have over one million individual CMOS devices of both PFET AND NFET type interconnected to form logic circuits e.g. logic gates which are then further interconnected to form various logic functions. The individual CMOS devices are intentionally made as small as possible in order to minimize the total semiconductor chip size and therefore the cost of a chip.
While the CMOS logic circuits are freely interconnected on a chip, when a logic signal must be sent to another chip, then additional driving power is required. Special driver circuits using much larger PFET AND NFET drivers are constructed on the chip in order to handle the increased driving power needed. A driver circuit may need to drive a transmission line with or without terminations. The transmission line may be part of a bus with multiple drivers connected or tapped on at various points, each one increasing the load capacitance which must be driven.
In addition, each driver must normally be capable of entering a tristate mode when not active in order to prevent a conflict with another driver on the bus which is currently active. The driver may also need to provide a termination for the transmission line a described in U.S. Pat. No. 4,859,877 which is incorporated by reference herein.
The driver circuits are of such a high power that they can not be driven directly by ordinary logic gates on the CMOS chip and accordingly a predriver circuit is used between the output of an ordinary logic gate on the chip and the inputs of a driver circuit. As shown in U.S. Pat. No. 5,381,059 there are usually two inputs to a driver circuit, one for the large NFET pull-down device and one for the large PFET pull-up device.
The predriver circuit therefore has two outputs and two or more inputs. The inputs are the data signal, a tristate mode signal and optionally various enable signals or signals to provide a termination function for cases where the driver is located at the end of a transmission line.
Driving the gate of a large PFET pull-up device of the driver circuit to an up level is a problem for a predriver circuit. In order to rapidly pull the gate of the driver PFET device to the upper supply rail, a relatively large PFET device is needed in the predriver circuit. Larger devices tend to be slower so that increasing the predriver PFET size to increase pull-up current does not necessarily result in faster operation.
Driving the gate of a large NFET pull-down device of a driver circuit to a down level is also a problem for a predriver circuit for similar, but complementary, reasons just described.
In cases where supply current transients are more important than operating speed, such as occurs with packages having a relatively large supply inductance, pull up action is intentionally delayed to reduce the effect of noise on other circuits. Boler et al. in U.S. Pat. No. 4,638,187, Yu et al. in U.S. Pat. No. 4,800,298, and Sood in U.S. Pat. No. 4,724,340 all use a PFET driven by an inverted delayed signal, in parallel with an NFET as a pull-up which reduces supply transients. Walters, Jr. in U.S. Pat. No. 5,041,738 uses programmable fuses to control the delay of the rise of a pull-up circuit.
The overall operating speed of a system with the predrive-driver combination is limited by both the slew rate and delay of the driver circuit as well as the time required to enter and return from tristate mode. Usually this mode switching becomes the limiting factor. Therefore it would be advantageous to match the mode switching speed to the operational switching speed so that neither one imposes a significant limitation.
In other applications it is important to control the overall operating speed of a predrive-driver system by providing a high speed but controlled slew rate of both the rising and falling edges of the predriver output. It is especially advantageous to control the slew rate during transition through the threshold region of a following PFET driver device.
In accordance with the teachings of the present invention, there is defined a new CMOS predriver circuit which includes capability for rapid pull-up of the gate of a driver PFET device and capability for matching mode switching speed to operational speed. It is believed that such a circuit constitutes a significant advancement in the art.
In accordance with other teachings of the present invention there is defined a new CMOS predriver circuit for pulling an output node up or down in a controlled fashion. The output node may be used to drive the gate of a driver NFET or PFET device. It is believed that such a circuit constitutes a significant advancement in the art.
OBJECTS AND SUMMARY OF THE INVENTION
It is therefore a principal object of the present invention to enhance the semiconductor circuit art by providing a digital circuit with enhanced pull up and pull down capabilities.
It is a further object to provide a CMOS predriver circuit wherein enhanced predrive capabilities are possible.
It is yet another object of the invention to provide a predriver/driver circuit combination with enhanced capabilities.
These and other objects are attained in accordance with one embodiment of the invention wherein there is provided a digital circuit for pulling an output node up or down in a controlled fashion, the digital circuit comprising, a first PFET having a source, a drain, and a gate, a first resistor with one end connected to the drain of the first PFET, a second PFET having a source connected to a second end of the first resistor, a drain connected to the output node, and a gate, a first NFET having a drain connected to the first PFET, a source connected to the output node, and a gate, a second NFET having a drain connected to the output node, a source, and a gate, a second resistor with one end connected to the source of the second NFET and the other end connected to a ground terminal, a third PFET having a source connected to the output node, a drain connected to the ground terminal and a gate, and means for simultaneously activating the gates of the NFET's and PFET's to pull up and pull down the output node.
REFERENCES:
patent: 4217502 (1980-08-01), Suzuki et al.
patent: 4638187 (1987-01-01), Boler et al.
patent: 4724340 (1988-02-01), Sood
patent: 4731553 (1988-03-01), Van Lehn et al.
patent: 4800298 (1989-01-01), Yu et al.
patent: 4859877 (1989-08-01), Cooperman et al.
patent: 5041738 (1991-08-01), Walters, Jr.
patent: 5099148 (1992-03-01), McClure et al.
patent: 5311076 (1994-05-01), Park et al.
patent: 5381059 (1995-01-01), Douglas
patent: 5594370 (1997-01-01), Nguyen et al.
patent: 5969554 (1999-10-01), Chan et al.
Kerr Michael Kevin
Lawson William Frederick
International Business Machines - Corporation
Pivnichny John R.
Tokar Michael
Tran Anh
LandOfFree
Slew rate controlled predriver circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Slew rate controlled predriver circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Slew rate controlled predriver circuit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2548957