Error detection/correction and fault detection/recovery – Data processing system error or fault handling – Reliability and availability
Reexamination Certificate
2001-04-19
2004-11-23
Baderman, Scott (Department: 2114)
Error detection/correction and fault detection/recovery
Data processing system error or fault handling
Reliability and availability
C714S047300, C714S051000, C714S002000, C714S053000, C712S227000, C712S235000
Reexamination Certificate
active
06823473
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to microprocessors. More particularly, the present invention relates to a pipelined, simultaneously and redundantly threaded processor adapted to execute the same instruction set in at least two separate threads for transient fault detection purposes. More particularly still, the invention relates to detecting transient faults between the multiple processor threads by comparison of their uncached load requests, and a data value replication system for insuring each thread receives the same uncached load data value.
2. Background of the Invention
Solid state electronics, such as microprocessors, are susceptible to transient hardware faults. For example, cosmic radiation can alter the voltage levels that represent data values in microprocessors, which typically include tens or hundreds of thousands of transistors. The changed voltage levels change the state of individual transistors, causing faulty operation. Faults caused by cosmic radiation typically are temporary and the transistors eventually operate normally again. The frequency of such transient faults is relatively low—typically less than one fault per year per thousand computers. Because of this relatively low failure rate, making computers fault tolerant currently is attractive more for mission-critical applications, such as online transaction processing and the space program, than computers used by average consumers. However, future microprocessors will be more prone to transient fault due to their smaller anticipated size, reduced voltage levels, higher transistor count, and reduced noise margins. Accordingly, even low-end personal computers benefit from being able to protect against such faults.
One way to protect solid state electronics from faults resulting from cosmic radiation is to surround the potentially effected electronics by a sufficient amount of concrete. It has been calculated that the energy flux of the cosmic radiation can be reduced to acceptable levels with at least six feet of concrete surrounding the chips to be protected. For obvious reasons, protecting electronics from faults caused by cosmic radiation with six feet of concrete usually is not feasible as computers are usually placed in buildings that have already been constructed without this amount of concrete. Because of the relatively low occurrence rate, other techniques for protecting microprocessors from faults created by cosmic radiation have been suggested or implemented that merely check for and correct the transient failures when they occur.
Rather than attempting to create an impenetrable barrier through which cosmic rays cannot pierce, it is generally more economically feasible and otherwise more desirable to provide the effected electronics with a way to detect and recover from faults caused by cosmic radiation. In this manner, a cosmic ray may still impact the device and cause a fault, but the device or system in which the device resides can detect and recover from the fault. This disclosure focuses on enabling microprocessors (referred to throughout this disclosure simply as “processors”) to recover from a fault condition.
One technique for detecting transient faults is implemented in the Compaq Himalaya system. This technique includes two identical “lockstepped” microprocessors that have their clock cycles synchronized, and both processors are provided with identical inputs (i.e., the same instructions to execute, the same data, etc.). In the Compaq Himalaya system, each input to the processors, and each output from the processors, is verified and checked for any indication of a transient fault. That is, the hardware of the Himalaya system verifies all signals going to and leaving the Himalaya processors at the hardware signal level—the voltage levels on each conductor of each bus are compared. The hardware performing these checks and verifications is not concerned with the particular type of instruction it is comparing; rather, it is only concerned that two digital signals match. Thus, there is significant hardware and spatial overhead associated with performing transient fault detection by lockstepping duplicate processors in this manner.
The latest generation of high-speed processors achieve some of their processing speed advantage through the use of a “pipeline.” A “pipelined” processor includes a series of units (e.g., fetch unit, decode unit, execution units, etc.), arranged so that several units can simultaneously process an appropriate part of several instructions. Thus, while one instruction is decoded, an earlier fetched instruction is executed. These instructions may come from one or more threads. Thus, a “simultaneous multithreaded” (“SMT”) processor permits instructions from two or more different program threads (e.g., applications) to be processed simultaneously. However, it is possible to cycle lockstep the threads of an SMT processor to achieve fault tolerance.
An SMT processor can be modified so that the same program is simultaneously executed in two separate threads to provide fault tolerance within a single processor. Such a processor is called a simultaneous and redundantly threaded (“SRT”) processor. Some of the modifications to turn a lockstep SMT processor into an SRT processor are described in Provisional Application Ser. No. 60/198,530. However, to utilize known transient fault detection requires that each thread of the SRT processor be lockstepped (as opposed to having two SRT processors lockstepped to each other). Hardware within the processor itself (in the Himalaya, the hardware is external to each processor) must verify the digital signals on each conductor of each bus. While increasing processor performance and yet still doing transient fault protection in this manner may have advantages over previous fault detecting systems, SRT processor performance can be enhanced.
One such performance enhancing technique is to allow each processor to run independently. More particularly, one thread is allowed to execute program instructions ahead of the second thread. In this way, memory fetches and branch speculations resolve ahead of time for the trailing thread. However, verifying, at the signal level, each input and output of each thread becomes complicated when the threads are not lockstepped (executing the same instruction at the same time).
A second performance enhancing technique for pipelined computers is an “out-of-order” processor. In an out-of-order processor each thread need not execute the program in the order it is presented; but rather, each thread may execute program steps out of sequence. The technique of fault tolerance by verifying bus voltage patterns between the two threads becomes increasingly difficult when each thread is capable of out-of-order processing. The problem is further exacerbated if the one processor thread leads in overall processing location within the executed program. In this situation not only would the leading thread be ahead, but this thread may also execute the instructions encountered in a different sequence than the trailing thread.
The final performance enhancing technique of SRT processor is speculative branch execution. In speculative branch execution a processor effectively guesses the outcome of a branch in the program thread and executes subsequent steps based on that speculation. If the speculation was correct, the processor saves significant time (for example, over stalling until the branch decision is resolved). In the case of an SRT processor it is possible that each thread makes speculative branch execution different than the other. Thus, it is impossible to do transient fault protection using known techniques—verifying digital signals on each bus—because it is possible there may be no corresponding signal between two threads.
What is needed is an SRT processor that can achieve performance gains over an SRT processor in which each thread is lockstepped by using the performance enhancing
Baderman Scott
Damiano Anne L.
LandOfFree
Simultaneous and redundantly threaded processor uncached... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Simultaneous and redundantly threaded processor uncached..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simultaneous and redundantly threaded processor uncached... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3308020