Semiconductor memory device capable of reliably performing...

Static information storage and retrieval – Read/write circuit – Testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S189090, C365S226000, C365S230060

Reexamination Certificate

active

06414890

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to semiconductor memory devices, and more particularly to a semiconductor memory device having a test mode in which the voltages of a plurality of word lines are boosted simultaneously. More particularly, the present invention relates to a configuration for performing a burn-in test at a wafer level.
2. Description of the Background Art
In recent years, semiconductor devices in which a large number of transistors are integrated have been used for various electric equipments such as a workstation and a personal computer. In manufacturing semiconductor devices, it is necessary for reliability testing and defect screening to perform a “burn-in” for operating and testing a semiconductor device in a high temperature range with a voltage higher than a normal operation voltage applied to the power supply of the semiconductor device. Because of stress caused by the burn-in, a potential defect portion which is latent in an insulation film or the like included in the semiconductor device is acceleratingly deteriorated and rendered revealing. Thus, the defective semiconductor device can be screened. The known burn-in tests includes a burn-in test carried out after semiconductor chips are assembled into a package, and a wafer level burn-in (WBI) test carried out on a wafer having a plurality of semiconductor chips which are not assembled yet.
The wafer level burn-in test is described, for example, by T. Furuyama et al., in “Wafer Burn-In (WBI) Technology for RAM's,” 1993 IEDM Tech. Digest, pp.639-642. The wafer level burn-in test has the following advantages over the conventional burn-in test. First, a semiconductor chip is not sealed in a package or a mold. It is therefore possible to perform the burn-in at a temperature higher than the tolerable (heat-resistant) temperature of the package or the mold. In addition, the burn-in voltage can be applied externally through a pad. It is therefore possible to set a higher stress electric field to shorten the burn-in time. Secondly, the wafer burn-in test is performed before a repair test for replacing a defective bit with a redundant one by laser trimming or the like. It is therefore possible to repair a defect, which is caused after the burn-in, by a subsequent repair test, improving the manufacturing yield. Thirdly, the location of a semiconductor chip with a detected defect on a wafer can be checked. By feeding back the defect information to the manufacturing line, the cause of the defect is eliminated at a wafer level and the manufacturing process can be improved easily.
A DRAM (Dynamic Random Access Memory) has memory cells each formed of one transistor/one capacitor, is inexpensive per bit, and has a structure suitable for high density. Therefore, the DRAM is utilized as a main memory for a personal computer that requires a large memory capacity. In the DRAM, the memory cells are arranged in rows and columns and each cell stores one-bit information of “0” or “1”. One electrode of a memory cell capacitor is formed of a cell plate and supplied with a prescribed voltage (intermediate voltage ½ times as high as an array power supply voltage). A plurality of word lines are provided for the rows of the memory cells, and a plurality of bit line pairs are provided for the columns of the memory cells. A gate of a memory cell transistor is connected to a corresponding word line (the memory cell transistor is usually a MOS transistor, and gate electrodes and word lines are formed in the same interconnection layer). The memory cell transistor is connected between a corresponding bit line and the other electrode (storage node) of the memory cell capacitor.
In the wafer level burn-in test, all the word lines are simultaneously selected or every other word lines are simultaneously selected in a stripe manner, and the bit lines and the cell plates are externally supplied with voltages. With the external burn-in voltage, a stress voltage can be applied to the gate insulation film of a memory cell transistor, the insulation film of a memory cell capacitor, an insulation film between adjacent word lines, an insulation film between adjacent memory cells, and so on.
FIG. 1
shows a configuration of a word line drive portion in a conventional DRAM described, for example, in U.S. Pat. No. 5,513,142. In the configuration shown in
FIG. 1
, a word line drive circuit for driving a corresponding word line to a selected state in accordance with a word line selection signal ZWD and sub decode signals RXi and ZRXi are provided for each word line WL. Sub decode signal RXi is generated by a boost signal driver RXD which receives the decode result RXF of a prescribed number of bits of a row address. Boost signal driver RXD receives, as one operating power supply voltage, a boosted voltage Vpp higher than an array power supply voltage. Sub decode signal ZRXi is generated by an inverter INV which receives sub decode signal RXi from boost signal driver RXD. Inverter INV is formed of a CMOS inverter and receives, as one operating power supply voltage, an array power supply voltage Vcca, not shown.
Word line drive circuit DRV includes a P channel MOS transistor P
1
connected between a node receiving sub decode signal RXi and a corresponding word line and receiving word line selection signal ZWD at its gate, an N channel MOS transistor N
1
connected between a corresponding word line and a ground node and receiving corresponding word line selection signal ZWD at its gate, and an N channel MOS transistor N
2
connected between the ground node and corresponding word line WL and receiving a complementary sub decode signal ZRXi at its gate.
Boost signal driver RXD is provided commonly to 128 word lines WL, for example. In wafer level burn-in, word line selection signals ZWD simultaneously attain a selected state or a low level, sub decode signal RXi from boost signal driver RXD attains the boosted voltage Vpp level, and complementary sub decode signal ZRXi becomes a low level. In each of word line drive circuits DRV, P channel MOS transistor P
1
is rendered conductive while N channel MOS transistors N
1
and N
2
are rendered non-conductive, so that sub decode signal RXi at the boosted voltage Vpp level is transmitted onto each word line WL. In short, a plurality of, for example 128, word lines WL are driven simultaneously to the selected state by one boost signal driver RXD. However, the drivability of boost signal driver RXD is designed to drive one word line from a ground voltage GND to boosted voltage Vpp at a certain speed in a normal operation mode. If boost signal driver RXD comes to have unnecessarily large drivability in the normal operation mode, the power consumption in the normal operation mode and the occupied area by the driver are increased, and therefore the drivability of boost signal driver RXD is set at a necessary minimum value. Therefore, when 128 word lines WL are to be driven simultaneously to the selected state in the wafer level burn-in test, boost signal RX gradually rises and exceeds the input logic threshold of inverter circuit INV. If boost signal RXi rises gradually as shown in
FIG. 2
, the falling speed of complementary sub decode signal ZRXi from inverter circuit INV becomes slower. In other words, shortly before the voltage level of sub decode signal RXi exceeds input logic threshold VIT of inverter circuit INV, complementary sub decode signal ZRXi begins to fall, and the voltage level of complementary sub decode signal ZRXi gradually becomes low as the voltage level of sub decode signal RXi rises.
Complementary sub decode signal ZRXi is applied to the gate of N channel MOS transistor N
2
in word line drive circuit DRV. MOS transistor N
2
is turned off when the gate-to-source voltage becomes a threshold voltage Vth or lower. Therefore, when the voltage level of sub decode signal RXi rises gradually, there is a period during which MOS transistor N
2
is on in word line drive circuit DRV, and electric charges from boost signal driver RXD are discharg

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor memory device capable of reliably performing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor memory device capable of reliably performing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor memory device capable of reliably performing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2910233

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.