Static information storage and retrieval – Systems using particular element – Ferroelectric
Reexamination Certificate
2003-10-24
2004-11-30
Phan, Trong (Department: 2818)
Static information storage and retrieval
Systems using particular element
Ferroelectric
C365S149000
Reexamination Certificate
active
06826072
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor memory device, especially, to a nonvolatile semiconductor memory device using a ferroelectric capacitor, a method of driving the same, and various systems each having the semiconductor memory device.
In recent years, a nonvolatile memory (FRAM) using a ferroelectric capacitor has received a great deal of attention as one of semiconductor memories. Since the FRAM is advantageous in that it is nonvolatile, the number of times of rewrite access is 10
12
, the read/write time almost equals that of a DRAM, and it can operate at a low voltage of 3 to 5V, the FRAMs may replace all memory markets. At present, in the Society, 1M bit FRAMs have been reported (H. Koike et al., 1996, IEEE International Solid-State Circuit Conference Digest of Technical Paper, pp. 368-369, February 1996).
Along with developments, the cell size of the FRAM has been reduced by simplifying and micropatterning the cell structure, as in development of DRAMs, from the SRAM+Shadow Memory structure as initially developed to a 2-transistor/2-capacitor structure.
FIG. 1A
shows the memory cell of a conventional DRAM having a 1-transistor/1-capacitor structure.
FIG. 1B
shows the memory cell of a conventional FRAM having a 1-transistor/1-capacitor structure. Reference symbol WL denotes a word line; BL, a bit line; SN, a storage node; and PL, a plate electrode. Clearly, the memory cell of the conventional FRAM having a 1transistor/1-capacitor structure is now the same as the DRAM having a 1transistor/1-capacitor structure having a transistor and a capacitor that are series connected.
The FRAM memory cell basically has the same structure as that of the DRAM. The FRAM is different from the DRAM in the following two points. (1) Although the DRAM uses a dielectric without any spontaneous dielectric polarization as a capacitor, the FRAM uses a ferroelectric capacitor. (2) In the DRAM, the plate electrode at one terminal of the capacitor is fixed at (½)Vcc. However, in the FRAM, the plate electrode potential is changed within the range of 0V to Vcc.
For (2), however, the scheme of changing the plate electrode potential is being replaced with a scheme of fixing the plate electrode at (½)Vcc.
Therefore, the FRAM equals the DRAM except for (1). The FRAM also has the same cell array structure as that of the DRAM. The FRAM has a folded bit line (BL) structure as shown in FIG.
1
C. The minimum cell size at this time is represented as follows:
2
F
×4
F
=8
F
2
In
FIG. 1C
, reference symbol MC denotes a memory cell; SA, a sense amplifier; and F, a minimum processing size. {overscore (BL)} and BL in
FIG. 1C
denote a bit line pair.
The principle of the operation of the FRAM will be briefly described with reference to FIG.
2
A and FIG.
2
B.
In the DRAM, the cell transistor is turned on, and Vcc or a voltage of 0V is applied to the cell capacitor to write charges, thereby storing store data “0” or “1”. In reading, the cell transistor is turned on to read out the charges. In the DRAM, the accumulated charges (polarization value [C]) are proportional to the voltage applied across the cell capacitor, as shown in FIG.
2
A. For this reason, when the applied voltage becomes 0V due to a leakage current at the p-n junction of the cell transistor or the like, the polarization value also becomes 0 C, and the information is destroyed.
In the FRAM, however, the polarization characteristics have a hysteresis. A case wherein, after power-ON, the plate (PL) voltage is 0V, the storage node (SN) potential is 0V, and data “0” has been written in the cell will be considered. Since the plate electrode potential is 0V, and the storage node potential is 0V, the voltage applied to the ferroelectric capacitor is 0V, and the polarization value is at a position D of the remnant polarization (=−Pr) in FIG.
2
B. When the memory cell data is to be read out, the bit line (BL) potential is precharged to 0V, the cell transistor is turned on, and the plate electrode voltage is raised to Vcc. Since the bit line capacity is larger than the storage node capacity, a voltage −Vcc is applied between the bit line and the plate electrode. The polarization value changes from the point D to a point C, so that a potential corresponding to the small saturation polarization difference Ps−Pr is read out to the bit line.
When data “1” has been written in the cell, the voltage −Vcc is applied between the bit line and the plate electrode, as in the above-described case. Accordingly, polarization inversion from a point B to the point C occurs, and charges in a large amount corresponding to Ps+Pr are read out to the bit line.
The reference bit line potential is raised to the potential at which charges corresponding to Ps are read out. In reading the data “1”, a potential difference corresponding to (Ps+Pr)−(Ps)=Pr is generated between the reference bit line and the bit line. In reading the data “0”, a potential difference corresponding to (Ps−Pr)−(Ps)=−Pr is generated between the reference bit line and the bit line. This result (potential difference) is amplified by the sense amplifier. The readout result is amplified by the sense amplifier. For the data “1”, the bit line is set at Vcc. For the data “0”, the bit line is set at 0V.
To rewrite the memory cell data, the plate electrode voltage is lowered to 0V again. At this time, the data “0” returns from the point C to the point D at BL−PL=0V, and the data “1” returns from the point C to the point D and then polarization-inverted to a point A at BL−PL=Vcc. Thereafter, the cell transistor is turned off. The data “1” moves from the point A to the point B when the storage node potential lowers to 0V due to the leakage current and stops at the point B.
FIG. 3A
shows the series of operations.
The largest difference between the operation of the FRAM and that of the DRAM is as follows. In the FRAM, no data is read out only by turning on the cell transistor and short-circuiting the bit line BL and the storage node SN. No charges are removed unless the direction of polarization is reversed to that for writing the charges between the bit line BL (storage node SN) and the plate electrode PL. Accordingly, a plate electrode operation with a large load capacity is required, and read/write access takes a long time. This is the disadvantage of the FRAM.
To solve this problem, the scheme of fixing the plate electrode potential at (½)Vcc is proposed, as described above. FIG.
3
B and
FIG. 3C
show the operations of these schema. In recall after power-ON (on the left side of FIG.
3
B and FIG.
3
C), the plate electrode PL is precharged to (½)Vcc, and the bit line BL is precharged to 0V. The word line WL is selected to turn on the cell transistor. At this time, a voltage of −(½)Vcc is applied between the bit line BL and the plate electrode PL. As shown in
FIG. 2B
, the data “1” is polarization-inverted from the point B to the point C, the data “0” moves from the point D to the point C without polarization inversion, and the accumulated charges are read out to the bit line BL. The information “0” or “1” is read out depending on the presence/absence of polarization inversion. The readout result is amplified by the sense amplifier. For the data “1”, the bit line BL is set at Vcc. For the data “0”, the bit line BL is set at Vss. A voltage of (½)Vcc=BL−PL or a voltage of (−½)Vcc=BL−PL is applied to the cells. The data “1” moves from the point C to the point A, the data “0” stays at the point C, and the data is written.
The scheme shown in
FIG. 3B
slightly differs from that shown in
FIG. 3C
in the subsequent operation. In
FIG. 3B
, after the bit line BL is equalized to (½)Vcc (more specifically, the data “1” moves from the point A to the point B, and the data “0” moves from the point C to the point D), the word line WL is closed to return the bi
Kabushiki Kaisha Toshiba
Phan Trong
LandOfFree
Semiconductor memory device and various systems mounting them does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor memory device and various systems mounting them, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor memory device and various systems mounting them will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3303234