Incremental printing of symbolic information – Light or beam marking apparatus or processes – Scan of light
Reexamination Certificate
1995-05-22
2002-11-12
Gordon, Raquel Yvette (Department: 3417)
Incremental printing of symbolic information
Light or beam marking apparatus or processes
Scan of light
Reexamination Certificate
active
06480222
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor laser for generating a laser beam and an apparatus for recording and/or reproducing optical information on and/or from media such as an optical disk using the semiconductor laser as an optical source, and more particularly, to a semiconductor laser for performing high-density optical memory recording/reproducing on the same principle as a near-field scheme, and a flying optical pickup using the same.
Recently, along with the miniaturization of information apparatuses, a small and lightweight optical pickup for recording/reproducing has been required. In addition, a small recording medium which is well-suited for the small optical pickup has likewise been required. Thus, demand for an optical memory recording method for recording as much information as possible on a limited recording area has increased. As a result, as a method for such high-density optical memory recording, much research has been carried out on a method for reducing the size of an optical spot formed on recording media after being transmitted from an optical source of an optical pickup system.
As a small and lightweight optical pickup, a flying optical pickup has been well known. Such an optical pickup system is shown in FIG.
1
. Here, a slider
2
“flies” slightly above the surface of an optical disk
1
, riding on a cushion of air, and is supported by an arm
3
. For searching information, slider
2
is driven by an actuator (not shown), to move along the radius of optical disk
1
.
According to the conventional optical pickup system attached to the side of the slider, as shown in
FIG. 2
, the optical pickup system has a very simple structure composed of a semiconductor laser
4
as an optical source and an optical detector
5
for detecting a signal. Semiconductor laser
4
has a facet
6
(resonator) formed by reflection-coating the emitting end thereof which is directed downward and toward optical disk
1
. Optical detector
5
is disposed behind (upward in
FIG. 2
) semiconductor laser
4
for generating an electrical signal from the detached rearward-radiated light of semiconductor laser
4
.
In the conventional optical pickup system, the emitting end of semiconductor laser
4
rides on a cushion of air several microns (h) thick, and the emitted laser beam is re-incident to semiconductor laser
4
after being reflected from the optical disk. When the intensity of the re-incident light is modulated according to information recorded on optical disk
1
, the optical output of semiconductor laser
4
is changed, and the signal of optical detector
5
is changed accordingly. Therefore, information recorded on optical disk
1
can be reproduced on the basis of the signal of optical detector
5
.
Referring to
FIG. 3
schematically showing a part of a crystal coupling body having a double hetero structure, the semiconductor laser used in the conventional flying optical pickup will be described in detail. The crystal coupling body of semiconductor laser
4
includes cladding layers made up of P region
7
and N region
8
, and an active region
9
between the cladding layers. When forward current flows along the crystal coupling body of
FIG. 3
, carriers (electrons and holes) are transferred from the P and N regions
7
and
8
to active region
9
, so that light generated by the re-coupling of electron and hole is emitted. The light is widely emitted (scattered) from the emitting end of active region
9
. The spot size of a laser beam generated from semiconductor laser
4
is determined according to the cross-section area of active region
9
in the near field region of the emitting end thereof. Thus, even when the gap between the optical disk and the emitting end of active region
9
is narrowed, there is still a limit to the reduction of the spot, so that optimum high-density optical memory recording/reproducing cannot be obtained.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a semiconductor laser as an optical source for high-density optical memory recording and reproducing, by forming a substantially reduced optical spot in the near field region thereof.
It is another object of the present invention to provide a flying optical pickup for performing high-density recording and reproducing using the semiconductor laser, satisfying the above object.
To achieve an object of the present invention, there is provided a semiconductor laser having an active region from whose emitting end lased light is emitted, the semiconductor laser comprising: an aperture member for partially obstructing the light from the emitting end of the active region, wherein the aperture member has a hole whose diameter is smaller than the width of the active region, through which a laser beam is restrictively emitted.
To achieve another object of the present invention, there is provided a flying optical pickup for recording/reproducing optical information on/from an optical disk, the flying optical pickup comprising: an optical system including a semiconductor laser having an active region from whose emitting end lased light is emitted, an optical detector for detecting the rearward-radiated light of the semiconductor laser as an electrical signal, and an aperture member for partially obstructing the light from the emitting end of the active region, the aperture member having a hole whose diameter is smaller than the width of the active region, through which a laser beam is restrictively emitted; and a slider to which the optical system is attached and which rides on a cushion of air, above the surface of the optical disk.
According to the above-described present invention, the substantial lased light emitting surface of the semiconductor laser is restricted to the hole diameter of the aperture member. Thus, the gap between the optical disk and the emitting end of active region is narrowed to form an optical spot in the near field region of the semiconductor laser emitting end, so that a substantially reduced optical spot can be formed on the optical disk.
REFERENCES:
patent: 4980893 (1990-12-01), Thornton et al.
patent: 1181588 (1989-07-01), None
patent: 4141824 (1992-05-01), None
Lee Chul-woo
Seong Pyong-yong
Yoo Jang-hoon
Gordon Raquel Yvette
Samsung Electronics Co,. Ltd.
LandOfFree
Semiconductor laser and flying optical pickup for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor laser and flying optical pickup for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor laser and flying optical pickup for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2973126