Semiconductor integrated circuit device

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S203000, C257S390000, C257S306000

Reexamination Certificate

active

06429476

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a semiconductor integrated circuit device and to the method of its fabrication; and, more particularly, the invention relates to a semiconductor integrated circuit having a DRAM (dynamic random access memory) with miniaturized memory cells
A DRAM memory cell, which is formed at the intersection of word lines and bit lines that are provided in a matrix pattern over the major surface of a semiconductor substrate, comprises a single memory-cell-selecting MISFET (metal-insulator-semiconductor field-effect transistor) and a single data-storage capacitor connected in series thereto. The memory-cell-selecting MISFET mainly comprises a gate oxide film, a gate electrode that is configured in a single unit with a word line, and a pair of semiconductor regions that form the source and drain regions. The bit line, which is provided over the memory-cell-selecting MISFET, is electrically connected to either the source region or the drain region. The data-storage capacitor, which is also provided over the memory-cell-selecting MISFET, is electrically connected to the other region, source or drain.
To compensate for the reduction in the capacitance of the data-storage capacitor, which accompanies the miniaturization of the memory cells, a stacked capacitor configuration, in which the data-storage capacitor is provided over the memory-cell-selecting MISFET, has been used in the DRAMs of recent years. The stacked capacitor configuration can roughly be classified into the following two configurations: a capacitor under-bit-line (CUB) configuration in which the data-storage capacitor is provided below the bit line, and a capacitor-over-bit-line (COB) configuration in which the data-storage capacitor is provided over the bit line.
In order to increase the capacitance of the data-storage capacitor, the surface area of the data-storage capacitor must be increased by an upward elongation of the capacitor's semiconductor form. In this case, however, if the CUB configuration, in which the data-storage capacitor is provided below the bit line, is to be employed, the aspect ratio of the contact hole that connects the bit line and the memory-cell-selecting MISFET significantly increases, and, as a result, the complete formation of the hole will become difficult. Accordingly, when the above two stacked capacitor configurations are compared, the COB configuration, in which the data-storage capacitor is provided over the bit line, is more suitable for the miniaturization of memory cells than the CUB configuration.
In the large-scale DRAMs that have appeared recently, for example, 64-Mbit DRAMs and
256-
Mbit DRAMs, it has become difficult to obtain enough storage capacitance by applying a simple upward elongation of the data-storage capacitor's configuration to increase its surface area. Accordingly, the use of a material with a high-dielectric constant for a capacitance-insulating film has been investigated. Such materials include Ta
2
O
5
(tantalum pentoxide), (Ba, Sr) TiO
3
(barium strontium titanate; hereinafter abbreviated as BST), or SrTiO
3
, (strontium titanate; hereinafter abbreviated as STO).
In official Patent Gazettes H. 11-186518, that corresponds to U.S. application Ser. No. 9/209,013 (filed on Dec. 11, 1998), and H. 11-238862, that corresponds to U.S. application Ser. No. 9/215,270 (filed on Dec. 18, 1998), a DRAM having COB memory cells is disclosed. The process of fabricating the DRAM disclosed in these Official Patent Gazettes has been simplified, in that the bit line and the first-layer wiring of the peripheral circuits are formed in the same single step. The bit line and the first-layer wiring are made of, for example, a two-layered conductive film in which a W (tungsten) film is deposited over a TiN (titanium nitride) film.
In the DRAM disclosed in official Patent Gazette H. 11-186518, when the bit line and the first-layer wiring are formed by patterning the two-layered conductive film, the TiN film that configures part of the bit line and part of the first-layer wiring of the peripheral circuits is utilized as an etching stopper that can prevent etching of the W plug inside the contact hole that connects the first-layer wiring with the MISFET of the peripheral circuits. In the DRAM disclosed in the Official Patent Gazette H. 11-238862, the first-layer wiring of the peripheral circuits is connected to the source and drain of the MISFET without the interposition of a plug. In this configuration, the TiN film under the W film is utilized as a barrier material to prevent the forming of an undesirable silicide layer as a result of reaction at the interface between the W film and the silicon substrate.
In the Official Gazette H. 11-214650, a DRAM is disclosed wherein the bit line and the first-layer wiring of the peripheral circuits are formed concurrently by a so-called Damascene method. In the Damascene method, a two-layered conductive film, comprising a WN (tungsten nitride) film and a W film that is deposited over that, is embedded inside the wiring groove that is formed in the insulating film. In this case, the WN film under the W film acts not only as an adhesive film between the W film and the insulating film in the Damascene configuration, but also as a barrier material which prevents the growth of an undesirable silicide layer at the interface between the W film and the silicon substrate.
SUMMARY OF THE INVENTION
The DRAM configuration to which the method of the present invention is applied is characterized by:
a COB configuration in which the data-storage capacitor is formed over the bit line so that the capacitance of the data-storage capacitor can be secured;
a high-dielectric film, for example Ta
2
O
5
, (tantalum pentoxide), as a capacitance-insulating film;
a refractory-metal bit line, for example W, the low resistivity of which improves the signal delay quality; and
a concurrent forming of the bit line and the first-layer wiring of the peripheral circuit, which reduces the number of fabrication process steps.
In a DRAM of this configuration, since a through hole that electrically connects the data-storage capacitor with the memory-cell-selecting MISFET is formed between adjacent bit lines, the width of the bit line needs to be reduced to 0.1 &mgr;m or less to ensure a margin against the possibility of a short-circuit forming between the bit line and the plug that has been embedded inside the through hole.
When forming a 0.1-&mgr;m-or-narrower bit line by patterning the W film that has been deposited over the insulating film, for example, silicon oxide, the inventors have found that a segregation occurs at the grain boundaries of the W that forms the bit line when high-temperature processing is applied to crystallize the high-dielectric constant material, for example Ta
2
O
5
, which forms the capacitance-insulating film of the data-storage capacitor.
The object of this invention is to provide a technique that can effectively prevent wiring breaks in the bit lines of a DRAM that has miniaturized memory cells.
The object and novel features of this invention will be clarified by the following description together with the accompanying drawings. A typical example of the invention disclosed in this application is briefly summarized in the following.
The semiconductor integrated circuit device of this invention comprises: memory cells including, a memory-cell-selecting MISFET, which is formed over the major surface of a semiconductor substrate, with a gate electrode that is configured a single unit with a word line; and a data-storage capacitor that is formed over a second insulating film which covers the bit line and that is electrically connected to the other part, either source or drain, of the memory-cell-selecting MISFET; and a bit line that is formed over a first insulating film which covers the memory-cell-selecting MISFET and that is electrically connected to either the source or drain of the memory-cell-selecting MISFET; wherein compressive stress is applied to the conductive film that configures the bit lin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor integrated circuit device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor integrated circuit device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor integrated circuit device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2943278

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.