Semiconductor integrated circuit device

Electronic digital logic circuitry – Function of and – or – nand – nor – or not – Field-effect transistor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C326S101000, C326S102000, C326S103000

Reexamination Certificate

active

06356118

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to semiconductor integrated circuits in general, and, more particularly, to semiconductor integrated circuits applicable to LSI'S, such as general purpose processors, digital signal processors, graphics processors and various control processors.
To achieve high performance design automation, gate array and cell-based IC's are currently in wide use. In particular, one type of a logic circuit referred to as a pass-transistor logic circuit, is known in this field. It is published that the pass-transistor logic circuit has a higher density, lower power consumption and smaller delay time than the CMOS logic circuits that are commonly used as the logic circuits.
So far, pass-transistor logic circuits have been introduced as a Differential Pass-Transistor Logic in the IEEE Journal of Solid-State Circuits, Vol. sc-22, No. 2, April 1987, pp216-pp222 (hereinafter referred to as a first conventional technology); as a Complementary Pass-Transistor Logic in the IEEE Journal of Solid-State Circuits, Vol. sc-25, No. 2, April 1990, pp388-pp395 (hereinafter referred to as a second conventional technology); and as a 1.5-ns 32-b CMOS ALU in Double Pass-Transistor Logic in the IEEE Journal of Solid State Circuits, Vol. 28, No. 11, November 1993, pp1145-pp1151 (hereinafter referred to as a third conventional technology).
Further, a Low-Power Logic Style: CMOS Versus Pass-Transistor Logic has been introduced in the IEEE Journal of Solid-State Circuits, Vol. 32, No. 7, July 1997, pp1079-pp1090 (hereinafter referred to as a fourth conventional technology). An example layout of a pass-transistor logic circuit is introduced in the Principles of CMOS VLSI Design—A Systems Perspective (by H. E. Weste & Kamran Eshraghian, translated by T. Tomisawa and Y. Matsuyama), published on Aug. 30, 1998, Maruzen Co., Ltd., p. 173 (hereinafter referred to as a fifth conventional technology). A circuit design technique that combines a pass-transistor circuit and the abovementioned standard-cell-based design is introduced in the IEEE 1994 Custom Integrated Circuits Conference, pp603-pp606 (hereinafter referred to as a sixth conventional technology).
Further, a circuit design technique that combines a-pass-transistor circuit and the standard-cell-based design by using a logic representation method called a binary decision diagram is introduced in the Institute of Electronics, Information and Communication Engineering, Proceedings of the 1994 IEICE Fall Conference (hereinafter referred to as a seventh conventional technology). A logic circuit cell using a pass-transistor circuit is shown in JP-A-7-130856 (laid-open on May 19, 1995, and corresponding to U.S. Pat. No. 5,581,202) (hereinafter referred to as an eighth conventional technology). A transmission gate multiplexer is disclosed in U.S. Pat. No. 5,162,666 (hereinafter referred to as a ninth conventional technology). A “Pass Transistor Network in MOS Technology” is introduced in IEEE 1983 International Symposium on Circuit and Systems, pp509-pp512 (hereinafter referred to as a tenth conventional technology).
SUMMARY OF THE INVENTION
FIGS. 4
a
and
4
b
show, as an example to be compared, the layout of a cell of a CMOS logic circuit developed by the inventors of this invention. To the knowledge of the present inventors, this layout is not known to the public. In this layout, gate terminals of PMOS and NMOS are arranged in line with each other to reduce the layout area. The inventors conducted a preliminary study on the cell layout based on the above design philosophy to realize an integrated circuit with a small layout area by using pass-transistor circuits.
FIGS. 5
a
and
5
b
show the result of a study by the present inventors. In these figures, the source (drain) diffusion layers at the same voltage cannot be used commonly to arrange the gate terminals closer together. Hence, the diffusion layers that cannot be used commonly need to be connected by upper-layer metal wires, giving rise to a problem of increased layout area and wire length. The longer total wire length as well as the increased layout area, in turn, increase the delay time. The object of the present invention is to provide a pass-transistor logic circuit that has a small layout area.
The conventional pass-transistor logic circuit has a problem that because the source (drain) terminal acts as an input terminal, the input signal waveform degrades. Further, because the input capacitance changes depending on the operating conditions, the delay calculation is difficult. To solve these problems, an inverter has been known to be provided to an input terminal of source (drain) terminal (as in the ninth and tenth conventional technology). However, the preliminary study by the inventors has found that this method increases the delay time by as much as the inverters added. Another object of the invention is to provide a pass-transistor logic circuit which is fast and allows easy delay calculation.
The present invention proposes a selector portion layout method to be used during the process of laying out the pass-transistor logic circuit cells of the above construction.
According to one aspect of the present invention, a cell is used that has at least one selector. To fabricate cells with small areas by using only polysilicon wires, or wires of the same material as gate terminals, and first-layer metal wires, the semiconductor circuit of the present invention is laid out according to the following design philosophy.
That is, in the pass-transistor circuit, pMOS's and nMOS's that are applied the same signals receive complementary gate signals. The MOS's with the same drain outputs are arranged to share their diffusion layers.
Further, according to another aspect of the present invention, when there is a plurality of selectors, output buffers are arranged at the ends of the cell, and the selectors are arranged in a direction in which the first power supply line and the second power supply line extend. With this arrangement, if there is a plurality of selectors, the number of the selectors can be increased flexibly in the direction of expansion, thus assuring a systematic layout. This in turn reduces the time required to design the layout of the selectors.
According to a further aspect of the present invention, a signal buffer is connected to the input side of the selector. As a result, all signals entering the pass-transistor circuit become gate signals, which in turn reduce the input capacitance, thus solving the problem of degraded input waveform. This arrangement can also prevent the input capacitance from varying depending on the operation conditions, making it easy to estimate the input capacitance and the delay calculation. This can be expected to shorten the design time.
Further, in this circuit which has the signal buffers connected to the source and drain terminals, because the signal path passing through the gate terminal of the pass-transistor circuit does not pass through the signal buffer, the high speed operation is possible.
According to a further aspect of the present invention, the integrated circuit including the circuit of this invention has power supply lines, of which power supply lines
1
,
3
,
5
, . . . ,
2
n+1, . . . (n is a natural number) are at the same voltage, and power supply lines
2
,
4
,
6
, . . . ,
2
n, . . . (n is a natural number) are at the same voltage. Thus, this integrated circuit can coexist with other circuits represented by CMOS circuits.
According to a further aspect of the present invention, the integrated circuit including the circuit of this invention has a latch. Because a signal passing through the gate terminal of the selector does not pass through the signal buffer, a high speed signal transmission between the latches is possible. The circuit of the invention therefore is an important factor in determining the specification of the integrated circuit.
According to a further aspect of the present invention, a signal that has passed through the input buffer now passes thro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor integrated circuit device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor integrated circuit device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor integrated circuit device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2861425

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.