Semiconductor device having multilevel interconnections and...

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S624000, C438S638000, C438S639000

Reexamination Certificate

active

06682999

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to a method of fabricating a semiconductor device and, more specifically, to a semiconductor device having multilevel interconnections and a method of manufacture thereof.
BACKGROUND OF THE INVENTION
The semiconductor industry is currently moving toward low dielectric constant (low-k) materials and copper metal to form interconnections for semiconductor devices to reduce resistive capacitance delays associated with the higher dielectric constant of silicon dioxide. These low-k materials also are used to reduce RC delays of aluminum interconnections and higher densities of a is conductor per unit are of the device. Furthermore, industry is presently moving away from metal etching of conductor lines followed by gap-fill with a low-k dielectric because copper metal is difficult to etch. In place of these processes, the industry has adopted damascene strategies for fabricating these interconnections that first etch patterns into the low-k material and then fills the structures with metal. Damascene processing has fewer manufacturing steps per completed metal layer, and considering that devices of the near future will require as many as seven inter-level connections, such as vias, and a corresponding number of intra-level connections, such as wires or lines, damascene processing should lead to considerable cost and performance gains over traditional interconnect processing. Additionally, dual damascene strategies where both the via and wire are patterned simultaneously etched and simultaneously filled with metal, further reducing the number of processing steps.
These damascene processes are not without their problems, however. Some of those problems arise with respect to the use of hard masks and critical dimension control. In the damascene approach as line widths shrink, it has become increasingly difficult to apply a copper seed layer to allow a complete fill by electroplating processes. Furthermore, during etching of the damascene structures, the selectivity of etching low-k materials, which are frequently polymeric materials, in the presence of photoresist is poor and requires inorganic dielectric etch stops to allow for over-etching and resist strip. During etching, there is a danger of undercutting the hard mask forming an area that is difficult to completely cover in subsequent deposition processes, resulting in a void. Thus, deposition of barriers to prevent copper diffusion and deposition of copper seed for electroplating are difficult processing steps, particularly given the high aspect ratios associated with today's submicron technologies that are less than 0.25 &mgr;m. Because of these high aspect ratios, the step coverage of severe topography is frequently insufficient and results in incomplete coverage of the feature sidewalls and bottom that leads to thin or missing barrier material and copper seed resulting in barrier failure or void formation during plating. Also, void-free fill of metal by electroplating is difficult since plating tends to cover topography conformally leading to a seam in the center of the feature. This can form a region of high electromigration probability that reduces device reliability. Additionally, the seam-void can also act as a trap for liquid plating solution that can “explode” during subsequent processing steps that achieve temperatures above the boiling point of the trapped liquid. Since plating tends to occur conformally, areas with a high density of small features tend to fill faster than larger open areas. As a result metal, must be plated to a thickness at least as the depth of the largest feature. This forms topography of varying heights that are difficult to planarize with chemical mechanical polishing (CMP) processes.
Accordingly, what is needed in the art is a method and resulting device that avoid the problems associated with the above-discussed processes.
SUMMARY OF THE INVENTION
To address the above-discussed deficiencies of the prior art, the present invention provides, in one aspect, a method for fabricating an interconnect system within a semiconductor device. In this particular embodiment, the method comprises forming a conductive layer over a substrate of the semiconductor device, such as a dielectric material, forming a photoresist layer over the conductive layer and patterning the photoresist, forming a selected portion and an unselected portion of the conductive layer, altering the selected portion such that the selected portion has an etch rate different from an etch rate of the unselected portion, and forming an interconnect on the selected or unselected portion. As used herein, the selected portion is defined as that portion of the conductive layer, such as a blanket seed layer, that is subject to the alteration process as discussed herein. The selected portion may be, depending on the embodiment, within a footprint of the interconnect or outside the footprint of the interconnect. The interconnect structure formed by the present invention includes interconnect lines, contact plugs or metal filled interconnect vias.
Thus in a broad scope, the present invention provides a method of uniformly forming a conductive layer on which an interconnect is formed within a patterned photoresist. Because of the uniformity with which the conductive layer is formed and its presence only at the bottom of the pattern, problems, such as the occurrence of voids within the interconnect, that arise due to conformal plating of aspect ratios associated with present day and future submicron technologies can be avoided, thereby, providing a more reliable interconnect within a semiconductor device. Moreover, the present invention eliminates the need for critical etches and highly conformal seed for electroplating.
In one embodiment, forming an interconnect on the selected portion includes forming an interconnect on the selected portion and the method further comprises removing a substantial portion of the unselected portion from a region around the interconnect. The term “substantial” as used herein is used to account for unintentional trace amounts that might remain due to inefficiencies in the removal process. In this embodiment, the selected portion is subjected to the alteration process wherein its etch rate is altered to have an etch rate less than an etch rate of the unselected portion. Thus, the unselected portion is more easily removed by the etching process.
In another embodiment, forming an interconnect includes forming an interconnect on the unselected portion and the method further comprises removing a substantial portion of the selected portion from a region around and outside of the interconnect's footprint. In this embodiment, the selected portion is subjected to the alteration process wherein its etch rate is altered to have an etch rate greater than an etch rate of the unselected portion. Thus, the selected portion is more easily removed by the etching process.
Various processes may be used to alter the selected portions of the conductive layer. For example, the process may include subjecting the selected portion to an ion bombardment process, or, the process may include subjecting the selected portion to a nitridation, oxidation or halogenation processes. Alternatively, altering may include alloying and forming compositions of the selected portion with another metal from Groups IIA-VA or a transition metal or a lanthanide metal. Compositions of the selected portion and the interconnect metal are particularly advantageous. In such embodiments, the interconnect metal and the conductive layer should be chosen so that they will interdiffuse or alloy under the desired processing conditions. For example, the conductive layer metal may be Group II metals, such as magnesium, or antimony. Other exemplary conductive layer metals may include titanium, zirconium, zinc, tin, lead, niobium, chromium, molybdenum europium, tungsten, palladium, or aluminum when the metal used to form the interconnect is copper or silver. Yet other metals may include Gro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device having multilevel interconnections and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device having multilevel interconnections and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device having multilevel interconnections and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3250216

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.