Semiconductor device arrangement having configuration via...

Active solid-state devices (e.g. – transistors – solid-state diode – Lead frame

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S692000, C257S782000

Reexamination Certificate

active

06246107

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the placement of bond wires and bonding pads in a semiconductor die assembly associated with a configurable integrated circuit package.
BACKGROUND
Semiconductor devices communicate with their environment of use by accepting electrical impulses supplied by an external source (such as a circuit board) and conducting these impulses to electrical circuits contained on a semiconductor chip. The semiconductor chip reacts to the input in a predetermined manner to generate output. The input and output of electrical impulses to the semiconductor device occur over multiple paths of electrically conducting material, generally referred to as leads.
The traditional structure of one of these devices consists of having a semiconductor die with an edge having a row of individual bonding pads regularly spaced and arrayed at the periphery of one edge of the semiconductor die. A pattern of individual leads is also present that are usually secured to an external IC package or structure. Individual bond wires normally connect a single lead to an individual bond pad. In a traditional embodiment the pattern of individual leads, each of the leads corresponds to one of the bonding pads and is substantially perpendicular to the edge of the die. In other approaches, bonding pads are included along one or more perimeter edges of the semiconductor die.
As semiconductor chips have decreased in size, one of the limiting factors has been the number of available I/O pathways for a given chip. As lead and lead frame technology has progressed, it has been desirable to maximize the number of individual leads that are available in a lead frame. To effectively increase the number of I/O pathways, both the lead count and the number of bonding pads are typically increased. This conflicts with the fact that the die size remains the same and that the leads cannot short with each other leads even when the number of bonding pads have been increased by creating an inner row of bonding pads. This approach leads to devices having higher pin count, which renders a more difficult to design and manufacturing process with little return for the investment.
With the evolution of the consumer market, silicon manufacturers have to provide many different devices belonging to the same family architecture to allow OEM or end customers to build attractive products with up-to-date features. With the market evolving quickly with dropping prices, it is not possible to offer all features on a single chip device because the pin count would become high and the device price too expensive. The common way to avoid a high pin count is to multiplex interfaces. Generally, the multiplexing control is accomplished by coding a configuration on dedicated device pins connected externally to Vdd (source) or Vss (ground).
By fabricating integrated circuits that can be configured into any of several different functional products, manufacturers seek to capitalize on a number of advantages. Multi-configurable integrated circuits permit greater flexibility in meeting customer design requirements. Such circuits also allow reduced tooling and fabrication costs—as some of the steps which would be duplicated during production of separate functional products can be eliminated by producing a single, multi-configurable integrated circuit. The multi-configurable integrated circuit also reduces the necessity to keep a large inventory of several functionally-different integrated circuit reticle sets on hand so as to meet the customer's needs.
When selecting a particular function or operating mode of a multi-function device, a variety of hook-up arrangements may be used, including: electrically connecting two or more bonding pads together, omitting specific connections, and transposing certain connections. Connecting two or more bonding pads typically involves connecting each pad individually to its respective lead by a connector wire, and then tying the two leads together with a jumper wire outside of the device package. Such an approach requires that two connector wires and two leads be provided for each pair of pads that are interconnected, and that the connector wires be routed over undesirable circuit areas. Consequently, the device is less reliable because of the additional connections, the excessive number of internal bond points and amount of connector wires; further, the device has a reduced number of functioning leads that may be brought out of the package.
Developing a cost-effective multi-configurable IC would be advantageous if the IC could increase the manufacturer's ability to use the same die for multiple uses without degrading the IC's functionality or integrity. In the IC market for wireless communication, for example, a first configuration of a multi-configurable IC device could be dedicated for a handset communicator application and a second configuration of the same multi-configurable IC device could be dedicated for a base communicator application. In another example, a multi-configurable IC device could be used for a handset device having a keypad scanning interface, and the same multi-configurable IC device could be sold with an altered configuration as a base communicator device having a telephone-answering machine function.
Accordingly, there is need for a cost-effective multi-configurable IC that overcomes the issues and problems discussed above.
SUMMARY OF THE INVENTION
Various aspects of the present application are directed to a multi-configurable semiconductor device and method for configuring such a device using target bonding pads on the die, with each of the target bonding pads being immediately-adjacent to another so as to minimize wire-length and routing paths when connecting the target bonding pads for the die's configuration.
According to an example embodiment, the present invention involves a multiple-configuration semiconductor device that includes a die package containing a pad-configurable die. The die has a plurality of bonding pads, including functional bonding pads and target bonding pads, and each of the target bonding pads is immediately adjacent to another of the target bonding pads and is designated to be connected to power or common (e.g., Vdd or Vss) depending on a desired configuration. The die package secures the die and includes leads for electrically connecting die circuitry to an external device. A plurality of lead fingers is configured to be contained within the die package, and the lead fingers are arranged to connect with the leads with the plurality of bonding pads. A bonding wire circuit includes a first plurality of bonding wires respectively connecting the functional bonding pads to selected lead fingers, and further includes a second plurality of bonding wires connecting each of at least two of the immediately-adjacent target bonding pads to Vdd or Vss. The connection of the immediately-adjacent target bonding pads to Vdd or Vss determines the desired configuration of the multiple-configuration semiconductor device.
In a more specific embodiment, the multiple-configuration semiconductor device, as characterized above, has a first target bond pad designated to be connected to Vdd or Vss, a second target bond pad designated to be connected to the other of Vdd or Vss, and a configuration target bond pad designated to be connected to Vdd for one circuit configuration and designated to be connected to the other of Vss for another circuit configuration. The configuration target bond pad is located between the first target bond pad and the second target bond pad.
Another aspect of the present invention is directed to a method for configuring the type of multiple-configuration semiconductor device characterized above or a similar-type device. The method includes providing a die with a plurality of bonding pads, including functional bonding pads and target bonding pads, wherein each of the target bonding pads is immediately adjacent to another of the target bonding pads and is designated to be connected to Vdd or Vss depending on a desired confi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device arrangement having configuration via... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device arrangement having configuration via..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device arrangement having configuration via... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2545747

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.