Semiconductor device and method of manufacturing the same

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – Insulated gate formation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S660000, C438S909000

Reexamination Certificate

active

06228752

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device having a wiring layer made of a metal or a metal laminate, and a method of manufacturing such a semiconductor device, and more specifically, to a semiconductor having a wiring layer containing a refractory metal, and a method of manufacturing such a device.
In the method of manufacturing an MOS (metal oxide semiconductor) type integrated circuit, some damages are caused to an end portion of a gate due to RIE (reactive ion etching), ion injection, stress or the like. In order to lessen such damages, it is conventionally considered that an oxidization step should be provided. A gate electrode containing polycrystalline silicon can be oxidized as the electrode is heated in an atmosphere containing dry oxygen or water vapor.
In the meantime, in order to realize a semiconductor device having a fine size and operating at high speed, the development of a metal gate electrode made of a single layer having a low resistance (to be called “metal gate electrode”) or a gate electrode having a laminate structure of metal and polycrystalline silicon (to be called polymetal gate electrode) and the like, is presently being progressed.
However, in the oxidizing atmosphere described above, the metal is more easily oxidized than silicon due to the difference between them in the formation energy of an oxide. Thus, the oxidizing rate for metal is very high, and therefore a gate electrode containing metal changes its shape such as the peeling off of the film, due to volume expansion.
In order to avoid this problem, a technique has been proposed (Jnp. Pat. Appln. KOKAI Publication No. 60-9166), for selectively oxidizing silicon only without oxidizing metal by heating an electrode in a mixture gas of water vapor serving as oxidizing agent, and hydrogen serving as reducing agent.
However, according to the researches made by the inventors of the present invention, it has been found that when a metal gate electrode made of a refractory metal such as W or Mo, or a polymetal gate electrode containing a refractory metal such as W or Mo, is subjected to a heat process carried out in an atmosphere containing hydrogen and water vapor, the width of a metal electrode portion is reduced, or the layer is thinned. In the case of a polymetal gate electrode, the cross section of the electrode is decreased, and therefore the resistance value is increased. In the case of a metal gate electrode, not only the resistance value is increased, but also the effective gate length is decreased, and therefore the electrical characteristics of the product would not have appropriate values as designed.
Further, it has been found that if a heat process is carried out at a temperature of 800 to 900° C., not only the decrease in the width or thinning of the electrode occurs, but also whiskers are created on the surface of a metal wiring. The whiskers, in some cases, have a length of several hundred nano-meters. As a result, an interlayer insulation film or the like cannot be deposited uniformly, and such non-uniformed deposition may become a cause for short-circuiting or leakage of current.
BRIEF SUMMARY OF THE INVENTION
An object of the present invention is to provide a method of manufacturing a highly reliable semiconductor device, by suppressing the change in the shape of the refractory metal layer.
Another object of the invention is to provide a highly reliable semiconductor device by suppressing the change in the shape of the refractory metal layer which constitutes the gate electrode.
According to the present invention, there is provided a method of manufacturing a semiconductor device, comprising the steps of: forming a conductive layer including a refractory metal layer, on a semiconductor substrate; and heat-processing the semiconductor substrate having the conductive layer, in an atmosphere containing water vapor and hydrogen, wherein the heat-processing step is carried out while controlling the vapor pressure of oxo-acid of refractory metal generated on the surface of the refractory metal layer.
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, comprising the steps of: forming a gate insulation film on a semiconductor substrate; forming a gate electrode containing a refractory layer, on the gate insulation film; heat-processing the semiconductor substrate in an atmosphere containing water vapor and hydrogen to lessen a damage caused to a portion of the semiconductor substrate, which is close to an end portion of the gate electrode, wherein the heat-processing step is carried out while controlling the vapor pressure of oxo-acid of refractory metal generated on the surface of the refractory metal layer.
Furthermore, according to the present invention, there is provided a semiconductor device comprising: a semiconductor substrate; a gate insulation film formed on the semiconductor substrate; and a gate electrode made of a laminate layer including a silicon layer formed on the gate insulation film, and a refractory metal layer, wherein the end portion of the refractory metal layer projects sidewards from the end portion of the silicon layer, and a silicon oxide film is formed on a side surface of the silicon layer located underneath the end portion of the refractory layer.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.


REFERENCES:
patent: 4505028 (1985-03-01), Kobayashi et al.
patent: 6017809 (2000-01-01), Inumiya et al.
patent: 60009166A (1985-01-01), None
Kiyotaka Miyano et al., “Suppression of W Vaporization during Si Selective Oxidation by Controlling H2O/H2Pressure Ratio” Conference Proceedings ULSI XIII (1998) ©Materials Research Society, pp. 677-683.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device and method of manufacturing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device and method of manufacturing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device and method of manufacturing the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2521256

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.