Semiconductor chip, set of semiconductor chips and multichip...

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Configuration or pattern of bonds

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S778000, C257S723000, C257S787000

Reexamination Certificate

active

06462427

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a chip-on-chip multichip module in which a plurality of chips are mounted on a chip as a substrate including pad electrodes; the substrate chip included in the module, and the chips mounted on the substrate chip.
Recently, a “single-chip system LSI”, that is, an LSI with a multiplicity of functions integrated together within a single chip, has been introduced and various design techniques have been proposed for the single-chip system LSI. In particular, an advantage of the single-chip system LSI is that a high-performance multifunction device is realized with a multiplicity of functions such as memories of, e.g., a dynamic random access memory (DRAM) and a static random access memory (SRAM) and circuits of, e.g., logic and analog circuits, integrated within a single semiconductor chip. However, in realizing such a system LSI, i.e., in fabricating a device with a multiplicity of functions, the following problems have been encountered.
One of the problems is that, when a system LSI develops to a higher degree, the cost of fabricating a device increases because a greater power is required and production yield decreases due to increase in total chip area.
Another problem is that it is difficult to combine a process for embedding mutually different types of devices such as a DRAM and a flash memory (FLASH) together with a pure CMOS process. This is because it is very difficult for a process performed on a device with a particular function and the pure CMOS process to have the same progress of development. Thus, the development of a process for embedding mutually different types of devices together is lacking a year or 2, behind that of the pure CMOS process using the cutting-edge skills. As a result, the production cannot meet the needs on the market timely.
To solve the problems, a chip-on-chip system LSI using a module including a plurality of chips was proposed in Japanese Laid-Open Publication No. 58-92230. In this chip-on-chip multichip module, pad electrodes formed on the upper surface of a chip as a substrate (i.e., a mother chip) are connected to respective pad electrodes formed on the upper surface of each chip to be mounted (i.e., daughter chip) with bumps. These chips are bonded and electrically connected to each other, thereby making a module including a plurality of chips. Unlike a single-chip system LSI, in the chip-on-chip multichip module, a multiplicity of functions are incorporated into a plurality of chips separately. Thus, it is possible to reduce the scale of each chip, and to increase the yield thereof. In addition, the module can also easily include mutually different types of devices that are also different in process generation. As a result, the resultant device is easily implemented as a multifunction device. Furthermore, in a system LSI that utilizes a chip-on-chip multichip module, each wire length required for communication between the mother and daughter chips is extremely short compared to a technique using other multichip modules. Therefore, high-speed communication can be obtained, and thus realizing communication equal to that between blocks in a known single-chip system LSI.
Thus, the chip-on-chip multichip module is an important technique replacing the known single-chip system LSI, but involves the following problems.
A first problem is that the cost of connecting the chips together increases. In general, to connect chips together, bumps are formed on pad electrodes of each chip, and then daughter chips are bonded onto a mother chip so that the chips are connected to each other. However, if the pad electrodes are different in shape or arrangement between the daughter chips, different photomasks for forming the bumps need to be made individually with respect to different daughter chips and the mounting process needs to be changed with respect to each different daughter chip. As a result, the mounting cost invariably increases.
A second problem is that, in making a module, the sufficient bonding strength between chips cannot be ensured. For example, in connecting the chips to each other, if an insufficient number of pad electrodes are formed or a great number of pad electrodes are biasedly arranged near a particular side of a chip bonding strength between chips is excessively decreased.
A third problem is that an insufficient voltage is applied from the mother chip to the daughter chips. In general, according to the shrinkage of design rules for downsizing an element included in an LSI, a device also has its height decreased. Then, the cross-sectional area of wires decreases and the sheet resistance thereof increases. Accordingly, in fabricating a mother chip by a downsizing process using the cutting-edge skills, a power source line needs to be made thicker than in a process using older skills. As a result, the downsized element involves drawbacks.
A fourth problem is that wiring delay increases when signals are transmitted among daughter chips. In a multichip module where a plurality of daughter chips are bonded onto a mother chip, signals are transmitted between the daughter chips via wiring formed on the mother chip. Thus, impedance matching of signal lines formed on the mother chip greatly affects communication efficiency among the daughter chips. As a result, because of the increases in sheet resistance of the wiring and in wiring capacitance due to the downsizing, signals are transmitted between the daughter chips at a lower speed.
A fifth problem is that it is difficult to ensure flexibility in designing because the relationship between the total chip area of the mother chip and that of daughter chips has limitations. In general, input and output of signals between a multichip module and external devices are performed via the mother chip. Thus, when a plurality of daughter chips are bonded onto the mother chip, the mother chip requires an area for bonding the daughter chips thereto and an area for disposing I/O parts for inputting and outputting signals to the external devices. That is to say, relationship between the total chip area of the mother chip and that of the daughter chips reduces the flexibility in designing a chip-on-chip multichip module.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a high-performance chip-on-chip multichip module, chip as a substrate, and set of chips that are mounted on the chip, with low cost and high flexibility in designing.
Specifically, an inventive set of small semiconductor chips is mounted on a large chip including a plurality of pad electrodes. Each of the small semiconductor chips includes, on its face, a plurality of pad electrodes that are arranged in an array. The pad electrodes of the small semiconductor chips are of a same size and a same shape, arranged at a same pitch, and made of a same material. The pitch is equal to a pitch between the pad electrodes of the large chip.
In the set of small semiconductor chips, the pad electrodes of all the small semiconductor chips are of the same size and shape, arranged at the same pitch, and made of the same material. Thus, the process steps of simultaneously mounting the small semiconductor chips onto the large chip can be easily performed. For example, the same photomask can be used to form bumps during the mounting process steps for making a module. As a result, the small semiconductor chips to be mounted are effective for making a multichip module at a low cost.
In one embodiment of the present invention, each of the small semiconductor chips may further include an internal circuit. Part of the pad electrodes of each of the small semiconductor chips may be electrically connected to the internal circuit. At least one of the pad electrodes, other than the part of the pad electrodes, may be electrically isolated from the internal circuit in each of the small semiconductor chips. Then, the resultant multichip module has a sufficient bonding strength. In addition, since the pad electrodes that require no electrical connection are electrically isolated fr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor chip, set of semiconductor chips and multichip... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor chip, set of semiconductor chips and multichip..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor chip, set of semiconductor chips and multichip... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2940060

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.